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Introduction

HANDE[Spencer2019]_ contains optimised, highly parallel implementations of the full configuration
interaction quantum Monte Carlo (FCIQMC) [Booth09], coupled cluster
Monte Carlo (CCMC) [Thom10] and Density Matrix Quantum Monte Carlo (DMQMC)
[Blunt14], [Malone15] algorithms for a variety of systems.  Development
work continues to add new features and investigate the algorithms and new applications.

HANDE can perform calculations on generic systems such as molecules via an externally
generated integral file. The integral file is in the FCIDUMP format
[Knowles89], which can be generated by several quantum chemistry codes such as
MOLPRO, Q-Chem (with patches from Alex Thom) and PSI4.
HANDE can also perform calculations on model Hamiltonians, for which no
additional integrals are required.  The model Hamiltonians currently available are the
Hubbard model, Heisenberg model and uniform electron gas.

Configuration interaction (CI) is also implemented using an external library
(lapack/scalapack) and can be performed in both serial and parallel.
Note that this is rather slow and intended for debugging purposes only.
Most quantum chemistry codes (e.g. PSI4) contain a substantially more powerful and
optimised CI implementation.




          

      

      

    

  

    
      
          
            
  
Some geography…

Files are organised in the HANDE repository as follows:


	./

	Root directory of the program.



	bin/

	Directory containing the compiled program, hande.x.  Created during
compilation.



	cmake/

	Directory containing the configuration used by the cmake build system.



	config/

	Directory containing the configuration input files used to generate makefiles.



	dest/

	Directory containing the compiled object files and dependency files.  Created
during compilation.



	documentation/

	Directory containing documentation on the HANDE program.  The
documentation is written in reStructured Text and can be converted
into a wide range of output formats.



	src/

	Directory containing the main source files.



	lib/

	Directory containing “library” source files.  These are procedures which are
not specific to the HANDE code but are generally useful.  Some are written
by the authors, some are freely available (as noted in the source files).



	tools/

	Directory containing scripts and tools for compiling, running and analysing
output from HANDE.



	test_suite/

	Directory containing a set of tests which HANDE should agree with.








          

      

      

    

  

    
      
          
            
  
Prerequisites

HANDE builds upon several well-written, efficient libraries to aid portability,
efficiency and sustainability.


Dependencies


	Fortran and C compilers

	HANDE is written in (mostly) Fortran 2003 with some C code.  We have tested HANDE
most recently (as of 2021) using GCC, and Intel compilers and are interested in
hearing of use with other compilers.


Note

HANDE is relatively aggressive in adopting new language features and hence
requires a fairly modern Fortran compiler.  In particular, gfortran 5.5 or earlier
is unlikely to successfully compile HANDE.  We regularly test with gfortran 7
and Intel 19.





	LAPACK and BLAS

	Available from http://www.netlib.org/lapack/ and http://www.netlib.org/blas/ and
vendor implementations.  Typically installed on HPC systems and available from package
manager.  This is only required for the FCI functionality in HANDE; the performance of
the QMC algorithms do not depend upon the quality of the LAPACK and BLAS libraries
used.



	lua 5.3 or 5.4

	Lua (available from http://www.lua.org) is required.  HANDE links to the lua library,
which is used for parsing the input file.  No performance critical code is written in
lua.


Note

A different version of the AOTUS library (which is included with HANDE) is
needed to use lua 5.2 due to API changes.  This is also provided with HANDE
(in the lib/aotus-5.2 directory).  To use it, set the variable lua_52 to any
non-empty value in the config file.





	MPI (parallel compilation only)

	MPI 2 is required.  We have used a variety of implementations (including OpenMPI and
various vendor implementations).  MPI 3 is highly recommended and is used by
default. MPI 3 shared memory functionality is used if detected.



	python 3.6+

	Almost all tools packaged with HANDE are written in python.


Note

python 3 versions may be sufficient but will probably
require additional work.  In particular, the argparse module (included from 2.7
and 3.2 onwards) is required and installing (especially recent versions of)
pandas  may be problematic.  Using a recent version of python is highly
recommended.





	pandas 0.14.1+

	The HANDE data analysis tools build heavily upon the python scientific
stack.  In particular, pandas (available from http://pandas.pydata.org) is required
for the pyhande module and analysis scripts, almost all of which build upon
pyhande.  pandas is not required for running HANDE but is highly recommended for
data analysis (though strictly speaking is only required if pyhande is used,
either directly or via analysis scripts).  It has been tested up to pandas 1.2.2



	statsmodels 0.11.0+

	Required from the latest version (1.5) for the pyhande module. It has been tested
up to 0.12.2.







Bundled dependencies


	AOTUS

	AOTUS provides a nice Fortran wrapper to Lua’s C-API.  For convenience (given that
module files are Fortran-specific), AOTUS is included in the HANDE source
distribution.



	cephes

	Mathematical functions.  Only the minimal subset required for the digamma (psi)
function are included.



	dSFMT and dSFMT_F03_interface

	dSFMT (double precision SIMD-oriented Fast Mersenne Twister) is a fast and high
quality pseudo-random number generator; dSFMT_F03_interface is a Fortran 2003 wrapper
to it.



	pyblock

	python module for performing blocking analyses.







Optional dependencies

The following are optional depedencies which add useful (in some cases almost critical)
functionality.  However, they are less likely to be compiled on HPC systems so for ease of
testing the functionality which depends upon them can be disabled at compile-time.


	HDF5

	HDF5 is a library for storing scientific data and is used in HANDE for checkpointing
(i.e. writing and reading restart files) in QMC calculations.

Highly recommended.  Disabling HDF5 removes the ability to perform any checkpointing.
It has been tested with up to version 1.12.0


Note

HANDE requires the Fortran 2003 interface to HDF5, which is not compiled by
default (see below), as this offers substantial advantages when working with
dynamically sized arrays containing variables of arbitrary kinds/precision.





	libuuid

	Provenance of a calculation, and the output file(s) produced by it, is an important
topic, currently the subject of much debate in computational science.  HANDE generates
a universally unique identifier (UUID), which is included in all files it produces.

Highly recommended but can be disabled without impacting on performance (but perhaps
not on the user’s sanity).


Note

Some Linux distributions install libuuid but require an additional package (e.g.
uuid-dev) to be installed in order for libuuid to exist on default search paths.
Some luck may be found by looking under /lib or /lib64 instead of /usr/lib and
/usr/lib64.





	scalapack (parallel compilation only)

	Available from http://www.netlib.org/scalapack/ and vendor implementations.  Often
already installed on HPC systems, included in Intel Maths Kernel Library and can be
installed from most package managers.







Compilation and installation notes

Some notes on compiling the less common dependencies.


Note

The following are guidelines and the links provided are not necessarily the latest
version of each package. Checking for the latest version is highly recommded.




lua

Lua is straightforward to compile.  For example:

$ wget -O - http://www.lua.org/ftp/lua-5.3.5.tar.gz | tar xvzf -
$ cd lua-5.3.5
$ make linux
$ make install INSTALL_TOP=$HOME/local





will install the lua program and library to subdirectories in $HOME/local.  It is usually
fine to compile lua using the GCC compiler and link HANDE against it using another
compiler family (e.g. Intel).



HDF5

HDF5 uses the GNU autotools build system, so is also straightforward to compile.  For
example:

$ wget -O - https://support.hdfgroup.org/ftp/HDF5/releases/hdf5-1.12/hdf5-1.12.0/src/hdf5-1.12.0.tar.gz | tar xvzf -
$ cd hdf5-1.12.0
$ ./configure --prefix=$HOME/local --enable-fortran
$ make
$ make install





will compile HDF5 and install it to subdirectories in $HOME/local.  By default this will
use the GCC compiler suite; other compilers can be used by setting the CC, CXX and F77
environment variables.  Note that for versions of HDF5 prior to 1.10.0 it is necessary to use the additional flag --enable-fortran2003 to include the Fortran 2003 interface which is required by HANDE.



pandas

Pandas can be installed by

$ pip install pandas





If you do not have root access, you can install the library locally with:

$ pip install pandas --user





Alternatively, where pip is not available, one can install it locally:

$ wget -O - https://github.com/pandas-dev/pandas/releases/download/v0.21.0/pandas-0.21.0.tar.gz | tar -xzvf -
$ cd pandas-0.21.0
$ python setup.py build
$ python setup.py install





Again, pandas can be installed locally by replacing the final command with:

$ python setup.py install --user










          

      

      

    

  

    
      
          
            
  
Compilation

It is possible to configure and build HANDE using CMake or using bare make.

The former requires CMake 3.6 (or newer). It will generate Makefile-s based
on the given configuration parameters and the detected tools and libraries on
your system. It will, in most cases, work out of the box.

The bare make build offers a higher degree of customisation. Also in this
case a Makefile will be generated based on a configuration file, of which
you can find examples in the config folder.



	Compilation using CMake
	Configuration options

	Installation

	CMake compilation issues

	Compiling with MPI





	Compilation
	Compile-time settings

	Compiler and library issues









A Docker image is also available to try out our code. After installing Docker
(https://docs.docker.com/install/) you can run the following command:


docker run -it handeqmc/hande_ubuntu18.04:latest




to start an Ubuntu 18.04 container with the latest version of HANDE installed.
The Python dependencies of HANDE are also installed in a virtual environment,
which you can access with pipenv shell.

To mount your local directory in common with the virtual machine use


docker run -it -v “$PWD”:/home/mightybuilder/work handeqmc/hande_ubuntu18.04:latest







          

      

      

    

  

    
      
          
            
  
Compilation using CMake

It is possible to configure and build HANDE using CMake. At least version 3.6
of CMake is required. You can get CMake either via your package manager or by
downloading an executable tarball from here [https://cmake.org/download/]
Unpacking and adding to your PATH will do the trick:

$ curl -L https://cmake.org/files/v3.10/cmake-3.10.2-Linux-x86_64.tar.gz | tar -xz
$ export PATH=$HOME/Software/cmake-3.10.2-Linux-x86_64/bin${PATH:+:$PATH}





where we have assumed the tarball was downloaded in the $HOME/Software
directory.

Once dependencies are installed, you can configure HANDE either by running the
cmake executable directly:

$ cmake -H. -Bbuild





or by using the frontend Python script cmakeconfig.py:

$ ./cmakeconfig.py build





The result of using the two methods is exactly the same: a subdirectory
build will be created containing the build system.
Using the frontend script however results in more compact configure lines.


Configuration options

Building of HANDE can be tweaked in various ways passing options to the
frontend script (or CMake directly).
The help menu for the cmakeconfig.py script shows the available options:

Usage:
  ./cmakeconfig.py [options] [<builddir>]
  ./cmakeconfig.py (-h | --help)

Options:
  --fc=<FC>                              Fortran compiler [default: gfortran].
  --extra-fc-flags=<EXTRA_FCFLAGS>       Extra Fortran compiler flags [default: ''].
  --cc=<CC>                              C compiler [default: gcc].
  --extra-cc-flags=<EXTRA_CFLAGS>        Extra C compiler flags [default: ''].
  --python=<PYTHON_INTERPRETER>          The Python interpreter (development version) to use. [default: ''].
  --add-definitions=<STRING>             Add preprocesor definitions [default: ''].
  --lua=<LUA_ROOT>                       Specify the path to the Lua installation to use [default: ''].
  --mpi                                  Enable MPI parallelization [default: False].
  --mpi-with-scalapack                   Enable ScaLAPACK usage with MPI [default: False].
  --omp                                  Enable OpenMP parallelization [default: False].
  --blas=<BLAS>                          Detect and link BLAS library (auto or off) [default: auto].
  --lapack=<LAPACK>                      Detect and link LAPACK library (auto or off) [default: auto].
  --mkl=<MKL>                            Pass MKL flag to the Intel compiler and linker and skip BLAS/LAPACK detection (sequential, parallel, cluster, or off) [default: off].
  --scalapack=<SCALAPACK_LIBRARIES>      Link line for ScaLAPACK libraries [default: '']
  --blacs=<BLACS_IMPLEMENTATION>         Implementation of BLACS for MKL ScaLAPACK (openmpi, intelmpi, sgimpt) [default: openmpi]
  --explicit-libs=<EXPLICIT_LIBS>        Explicit linker options for extra libraries to be linked in [default: ''].
  --dsfmt-mexp=<HANDE_DSFMT_MEXP>        An integer among 521, 1279, 2203, 4253, 11213, 19937, 44497, 86243, 1322049, 216091 [default: 19937].
  --det-size=<HANDE_DET_SIZE>            An integer among 32 or 64 [default: 32].
  --pop-size=<HANDE_POP_SIZE>            An integer among 32 or 64 [default: 32].
  --exe-name=<HANDE_EXE_NAME>            [default: "hande.cmake.x"].
  --hdf5=<HDF5_ROOT>                     Specify the path to the HDF5 installation to use [default: ''].
  --uuid=<UUID>                          Whether to activate UUID generation [default: True].
  --single                               Enable usage of single precision, where appropriate [default: False].
  --backtrace                            Enable backtrace functionality [default: False].
  --popcnt                               Enable use of intrinsic popcnt [default: False].
  --type=<TYPE>                          Set the CMake build type (debug, release, relwithdebinfo, minsizerel) [default: release].
  --generator=<STRING>                   Set the CMake build system generator [default: Unix Makefiles].
  --show                                 Show CMake command and exit.
  --cmake-executable=<CMAKE_EXECUTABLE>  Set the CMake executable [default: cmake].
  --cmake-options=<STRING>               Define options to CMake [default: ''].
  --prefix=<PATH>                        Set the install path for make install.
  <builddir>                             Build directory.
  -h --help                              Show this screen.





These options are translated to CMake native options. For more detailed information on
HANDE-specific compile-time settings, see Compile-time settings. The following list
is a translation guide between the frontend script and “bare” CMake:


	--fc=FC/-DCMAKE_Fortran_COMPILER=FC. To set the Fortran compiler. Default
is gfortran.


	--extra-fc-flags="list-of-flags"/-DEXTRA_FCFLAGS="list-of-flags". To set additional flags
for the Fortran compiler.


	--cc=CC/-DCMAKE_C_COMPILER=CC. To set the C compiler. Default is gcc.


	--extra-cc-flags="list-of-flags"/-DEXTRA_CFLAGS="list-of-flags". To set additional flags
for the C compiler.


	--python=INTERP/-DPYTHON_INTERPRETER=INTERP. To set the Python interpreter. The
default is empty, so that CMake will attempt to find a suitable version.


	--lua=LUA/-DLUA_ROOT=LUA. To set the Lua installation to use. Minimum
required version of Lua is 5.3. The default is empty, so that CMake will attempt to
find a suitable version.
See below for Lua detection issues.


Warning

CMake will not pick up Lua from a nonstandard location, even though it is on
path (any or all of CPATH, LIBRARY_PATH, LD_LIBRARY_PATH,
PATH)





	--mpi/-DENABLE_MPI=ON. Enables MPI parallelization. CMake will
attempt to find a suitable implementation of MPI and set the compilers
accordingly.


Warning

To use a specific MPI implementation, pass the appropriate MPI compiler
wrappers as arguments to --fc (-DCMAKE_Fortran_COMPILER) and
--cc (-DCMAKE_C_COMPILER)
For example, for the Intel MPI compiler wrappers mpiifort and mpiicc use
./cmakeconfig.py --mpi --fc=mpiifort --cc=mpiicc.





	--mpi-with-scalapack/-DENABLE_SCALAPACK=OFF. Enables linking to
ScaLAPACK. This requires that MPI is enabled and that a ScaLAPACK
implementation is available.


	--omp/-DENABLE_OPENMP=ON. Enables OpenMP parallelization. CMake will
check which flags are supported by your choice of compilers and add them to
the compiler flags.


	--blas=auto/-DENABLE_BLAS=auto. Triggers autodetection of BLAS libraries.
See below for math libraries detection issues.


	--lapack=auto/-DENABLE_LAPACK=auto. Triggers autodetection of BLAS libraries.
See below for math libraries detection issues.


	--mkl=VALUE/-DMKL_FLAG=VALUE. Sets the -mkl=VALUE flag for the Intel
compiler and linker. Valid values are sequential, parallel, cluster, or
off, with off being the default.


Warning

Passing this option overrides automatic detection of math libraries





	--scalapack="link-line"/-DSCALAPACK_LIBRARIES="link-line". Link line for ScaLAPACK libraries.
If using Intel MKL, CMake will be able to correctly locate and set these for
you. Use this option in case you run into trouble with detecting ScaLAPACK
and prefer setting the link line explicitly.


	--blacs=openmpi/-DBLACS_IMPLEMENTATION=openmpi. Sets the implementation of
BLACS for the Intel MKL ScaLAPACK libraries. Valid values are openmpi,
intelmpi and sgimpt, with openmpi being the default.


	--explicit-libs="link-line"/-DEXPLICIT_LIBS="link-line". Sets explicit linker options for
extra libraries to be linked in.
See below for math libraries detection issues.


	--dsfmt-mexp=VALUE/-DHANDE_DSFMT_MEXP=VALUE. Set exponent for the period of the
Mersenne Twister (MT) random number generator (RNG). Valid values are 521,
1279, 2203, 4253, 11213, 19937, 44497, 86243, 1322049, and 216091. with 19937
being the default.


	--det-size=VALUE/-DHANDE_DET_SIZE=VALUE. Set the integer length for representing
Slater determinants as bit strings. Valid values are 32 and 64, with 32
being the default.


	--pop-size=VALUE/-DHANDE_POP_SIZE=VALUE. Set the integer length for storing
walker populations. Valid values are 32 and 64, with 32
being the default.


	--exe-name=NAME/-DHANDE_EXE_NAME=NAME. Set the name for the generated HANDE executable.
The default is hande.cmake.x. The executable is copied to the bin
directory in the root of the project and symlinked to hande.x. Passing
the executable name will let you preserve executables generated with
different configuration settings.


	--hdf5=<HDF5>/-DENABLE_HDF5=<ON/OFF> -DHDF5_ROOT=<HDF5>.
Enables use of HDF5 and specifies the path to the HDF5 installation to use.
By default, use of HDF5 is turned on. At least HDF5 1.8.15 is required and
with Fortran 2003 bindings enabled. CMake will search for a suitable version
of HDF5 and check that all necessary components are available. In addition,
CMake will check the compatibility of the chosen HDF5 implementation and
Fortran compiler.
See below for HDF5 detection issues.


	--uuid=<ON/OFF>/-DENABLE_UUID=<ON/OFF>. Enables use of the UUID library.
By default, this is turned on.


	--single/-DENABLE_SINGLE_PRECISION=ON. Enables use of single
precision, where appropriate.


	--backtrace/-DENABLE_BACKTRACE=ON. Enables backtrace functionality.


	--popcnt/-DENABLE_INTRINSIC_POPCNT=ON. Enables usage of popcnt
intrinsic (requires hardware support)


	--type=debug/-DCMAKE_BUILD_TYPE=Debug. Switches build type. Valid
values are debug, release, releasewithdebinfo and minsizerel.
The default is a debug build.


	--cmake-options="-DTHIS -DTHAT". Sets options to be forwarded as-is to
CMake.






Installation

It is possible to install HANDE either running outside the build directory:

$ cmake --build build --target install





or from within the build directory:

$ make install





By default, CMake will set the install prefix to /usr/local and you might
hence not have permissions to successfully install. The install prefix can be
set via the --prefix option to the frontend script or, equivalently,
passing the desired path to CMake via the CMAKE_INSTALL_PREFIX variable.
The HANDE executable and static library will be installed to the bin and
lib (lib64 on 64-bit systems) subdirectories of the install prefix.


Note

It might be advisable to install pyhande to the same prefix as the HANDE
executable. Refer to pyhande’s README [https://github.com/hande-qmc/hande/blob/master/tools/pyhande/README.rst]
for detailed instructions.



Assuming the install prefix to have been set to $HOME/Software/hande, the
install tree will thus look as follows:

$HOME/Software/hande/
├── bin
│   └── hande.cmake.x
└── lib64
    └── libhande.a





The `DESTDIR mechanism <https://www.gnu.org/prep/standards/html_node/DESTDIR.html>`_ can be used to
adjust the install location:

$ env DESTDIR=/tmp/local make install





will result in the following install tree:

/tmp/local/$HOME/Software/hande
├── bin
│   └── hande.cmake.x
└── lib64
    └── libhande.a







CMake compilation issues

When dependencies are not in standard search paths, CMake needs to be nudged
and pointed in the right direction. This can be done directly using either cmake or
cmakeconfig.py; the equivalent commands for both are given below but only one should be
used.


	Detection of math libraries is usually the trickiest part. The CMake math
detection scripts shipped with HANDE rely on the MATH_ROOT environment
variable being set to point to the root of the math libraries installation
you want to use.
The detection scripts will attempt to provide a link line for math libraries
based on the search order in the CMake variable MATH_LIB_SEARCH_ORDER.
By default, Intel MKL is searched for first, using the MKLROOT
environment variable.
If math detection fails, libraries can be set manually:

$ ./cmakeconfig.py --blas=off --lapack=off --explicit-libs="-L/usr/lib -lblas -llapack"
$ cmake -H. -DENABLE_BLAS=OFF -DENABLE_LAPACK=OFF -DEXPLICIT_LIBS="-L/usr/lib -lblas -llapack"







	Lua in a non-standard directory. Exporting the root directory of the Lua
installation as LUA_ROOT (or LUA_DIR) or directly passing it as an option:

$ ./cmakeconfig.py --lua=/install/dir/for/Lua build
$ cmake -H. -Bbuild -DLUA_ROOT=/install/dir/for/Lua







	HDF5 in a non-standard directory. Exporting the root directory of the HDF5
installation as HDF5_ROOT os directly passing it as an option:

$ ./cmakeconfig.py --hdf5=/install/dir/for/HDF5 build
$ cmake -H. -Bbuild -DENABLE_HDF5=ON -DHDF5_ROOT=/install/dir/for/HDF5





CMake will check that the chosen HDF5 library and Fortran compiler are
compatible. If this test fails, configuration will abort. The output from the
compatibility file will be saved to the log file
HDF5_HAS_Fortran2003-test.log in the build directory.
Note that is is possible to completely deactivate usage of HDF5:

$ ./cmakeconfig.py --hdf5=False
$ cmake -H. -Bbuild -DENABLE_HDF5=OFF









For compiler- and library-specific issues, see Compiler and library issues.



Compiling with MPI

To compile with MPI it is necessary to pass both the --mpi option
and the correct compiler wrappers with the --cc and --fc:

$ ./cmakeconfig.py --mpi --fc=mpif90 --cc=mpicc
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpif90 -DCMAKE_C_COMPILER=mpicc -DENABLE_MPI=ON





CMake can in fact botch the identification of the compiler wrappers and MPI
libraries, a mismatch that will result in linker errors.
Here are some examples of configuration lines. In all cases, remember to set
the MATH_ROOT variable to point to the location of the math libraries:


	OpenMPI with GNU compilers.

$ ./cmakeconfig.py --mpi --fc=mpif90 --cc=mpicc
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpif90 -DCMAKE_C_COMPILER=mpicc -DENABLE_MPI=ON







	OpenMPI with Intel compilers.

$ ./cmakeconfig.py --mpi --fc=mpif90 --cc=mpicc
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpif90 -DCMAKE_C_COMPILER=mpicc -DENABLE_MPI=ON







	IntelMPI with Intel compiler.

$ ./cmakeconfig.py --mpi --fc=mpiifort --cc=mpiicc
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpiifort -DCMAKE_C_COMPILER=mpiicc -DENABLE_MPI=ON







	OpenMPI with GNU compilers and OpenBLAS ScaLAPACK.

$ ./cmakeconfig.py --mpi --fc=mpif90 --cc=mpicc --mpi-with-scalapack --scalapack="-L/location/of/scalapack -lscalapack"
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpif90 -DCMAKE_C_COMPILER=mpicc -DENABLE_MPI=ON -DENABLE_SCALAPACK=ON -DSCALAPACK_LIBRARIES="-L/location/of/scalapack -lscalapack"







	OpenMPI with Intel compilers and MKL ScaLAPACK. The math detection script
will use the OpenMPI implementation of BLACS by default.

$ ./cmakeconfig.py --mpi --fc=mpif90 --cc=mpicc --mpi-with-scalapack
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpif90 -DCMAKE_C_COMPILER=mpicc -DENABLE_MPI=ON -DENABLE_SCALAPACK=ON







	IntelMPI with Intel compiler and MKL ScaLAPACK. In this case we need to tell
CMake what BLACS implementation to use with ScaLAPACK.

$ ./cmakeconfig.py --mpi --fc=mpiifort --cc=mpiicc --mpi-with-scalapack --blacs=intelmpi
$ cmake -H. -Bbuild -DCMAKE_Fortran_COMPILER=mpiifort
-DCMAKE_C_COMPILER=mpiicc -DENABLE_MPI=ON -DENABLE_SCALAPACK=ON
-DBLACS_IMPLEMENTATION=intelmpi













          

      

      

    

  

    
      
          
            
  
Compilation

After ensuring HANDE’s dependencies are installed, produce a makefile by running the
mkconfig.py (residing in the tools subdirectory) script in the root directory:

$ tools/mkconfig.py config/conf





where conf is one of the platforms available and is simply the name of the relevant
file residing in the config/ directory.  Various configurations are provided and it is
simple to adapt one to the local environment (e.g. changing compiler or library paths).


Warning

If any prereq have been installed to non-default (e.g. to $HOME/local) paths, then
these paths must be made available to the compiler via ldflags (see below) – e.g.
using -L $HOME/local – and, for dynamic libaries added to the environment by
setting the LD_LIBRARY_PATH environment variable.



Run

$ tools/mkconfig.py --help





to see the options available, including inspecting available configurations.

A configuration is defined using a simple ini file, consisting of three sections:
main, opt and dbg.  For instance:

.. [todo] - minimal working example






[main]
fc = gfortran
ld = gfortran
libs = -llapack -lblas

[opt]
fflags = -O3

[dbg]
fflags = -g




Any option not specified in the ‘opt’ and ‘dbg’ sections is inherited from the
‘main’ section.  The settings in ‘opt’ are used by default; the debug options
can be selected by passing the -g option to mkconfig.

All options are strings unless otherwise specified.  Available options are:


	fc

	Set the fortran compiler.



	fflags

	Set flags to be passed to the fortran compiler during compilation.



	f90_module_flag

	Set the flag used by the compiler which is used to specify the directory
where module (.mod) files are placed when created and where they should be
searched for.



	f90_module_flag_pad [boolean]

	True if a space needs to be inserted between the defined f90_module_flag
and the corresponding directory argument.  Default: true.



	cc

	Set the C compiler.



	cflags

	Set flags to be passed to the C compiler during compilation.



	ccd

	Set the C compiler used to generate the C dependency files.  Only required
if cc doesn’t support -MM and -MT flags.  Default: use cc.



	cdflags

	Set the flags for the c++ compiler used to generate the C++ dependency files.
Default: $CFLAGS -MM -MT



	cxx

	Set the C++ compiler.



	cxxflags

	Set flags to be passed to the C++ compiler during compilation.



	cxxd

	Set the C compiler used to generate the C++ dependency files.  Only required
if cc doesn’t support -MM and -MT flags.  Default: use cxx.



	cxxdflags

	Set the flags for the c++ compiler used to generate the C++ dependency files.
Default: $CXXFLAGS -MM -MT



	cpp

	Set the C preprocessor to be used on Fortran source files.  If not defined
then the Fortran compiler is used to do the preprocessing.



	cppflags

	Set flags to be used in the C preprocessing step.
C preprocessing is applied to .F90, .F, .c and .cpp files (and not .f90
files).



	ld

	Set the linker program.



	ldflags

	Set flags to be passed to the linker during linking of the compiled objects.



	libs

	Set libraries to be used during the linking step.



	ar

	Set the archive program.  Default: ar.



	arflags

	Set the flags to be passed to the archive program.  Default: -rcs.





To compile the code run

$ make





HANDE’s build system uses the sfmakedepend script (http://people.arsc.edu/~kate/Perl/,
supplied in tools/) by Kate Hedstrom to generate the list of dependencies for each
Fortran source file.  These are generated automatically when make is run if the dependency
files do not exist.

The executable, hande.x, is placed in the bin subdirectory.  Note that this is
actually a symbolic link: a unique executable is produced for each platform and
optimisation level and hande.x merely points to the most recently compiled executable
for convenience.  This makes testing against multiple platforms particularly easy.

There are various goals in the makefile.  Run

$ make help





to see the available goals.


Compile-time settings

The behaviour of the program can be changed in various ways by some choices at
compile-time by using C pre-processing.  These choices largely influence the
speed, memory usage, inclusion of parallel code and workarounds for certain
compilers.

The pre-processing options which accept a value are set by:

-DOPTION=VAL





which defines the pre-processing definition OPTION to have value VAL.
Similarly, the options which just need to be defined to be used are set by:

-DOPTION





These should be added to the cppflags or cppdefs lines in the configuration
files or in the Makefile, as desired.


Warning

Certain options, for technical reasons, change the Markov chain of QMC calculations.
Results should be in statistical agreement but the precise data produced by the
calculation (even using the same random number seed) may well be changed.

This currently applies to the following options: POP_SIZE and
SINGLE_PRECISION.




	DET_SIZE

	Default: 32.

HANDE uses bit strings to store Slater determinants, where each bit
corresponds to an occupied spin-orbital if the bit is set and an unoccupied
spin orbital otherwise.  As Fortran does not include a type for a single
bit, integers are used.  Note that this does lead to some wasted memory when
the number of spin-orbitals is not a multiple of the size of the integer used.
An array of integers is used to store the determinant bit string if
a single integer is not sufficient.

This option sets the integer length to be used.  Allowed values are 32 and
64, corresponding to using 32-bit and 64-bit integers respectively.  As bit
operations on a 64-bit integer are faster than those on two 32-bit integers,
using DET_SIZE=64 is recommended for production calculations.  (Note,
however, that this will use more memory than DET_SIZE=32 if the number of
basis functions is closer to a multiple of 32 rather than 64.  This is
rarely a concern in practice.)



	POP_SIZE

	Default: 32

This option is used to specify whether 32 or 64-bit integers are used to
store walker populations in HANDE. It is unlikely that 64-bit integers will
be needed when using the integer code but this option is more critical
when the real_amplitudes option is being used. When using the
real_amplitudes option with POP_SIZE=32, the largest walker amplitude
that can be stored is \(2^{20}=1048576\), while the smallest fractional part that
can be represented is \(2^{-11}=0.00049\). When using this option and POP_SIZE=64
the largest amplitude is \(2^{32}=4.3\times10^9\) and the smallest fractional part
is \(2^{-31}=4.66\times10^{-10}\).



	DEBUG

	Default: not defined.

If defined then add additional information in output (e.g. stack traces) that might be
useful for debugging.  Recommended for developers only.  The format and content of the
additional debug output should not be relied upon.



	DISABLE_MPI3

	Default: not defined.  Only relevant when PARALLEL is defined.

If defined then additional functionality provided by the MPI 3 standard is not used.
This disables some functionality (e.g. exploiting MPI 3 shared memory to store large
integral arrays only once per node rather than once per processor) and causes
slower fallback communication procedures to be used in some cases.



	DISABLE_HDF5

	Default: not defined.

If defined then the QMC restart functionality is disabled and the dependency on HDF5
(which can be tricky to compile on some machines) is removed.  Note that restart
functionality is extremely useful in production simulations so this option should
only be used during initial porting efforts.



	DISABLE_UUID

	Default: not defined.

If defined then each calculation will not print universally unique identifier. This removes the
dependency on libuuid.



	DISABLE_SCALAPACK

	Default: not defined

If defined then FCI calculations in parallel are disabled, and the dependency on ScaLAPACK is removed.



	DISABLE_BACKTRACE

	Default: not defined

If defined then the backtrace is disabled.  The backtrace functionality is a GNU extension and not
available on all POSIX architectures.  No working functionality is lost.



	DSFMT_MEXP

	Default: 19937.

HANDE uses the dSFMT random number generator (RNG).  It is based on
a Mersenne Twister algorithm, is extremely fast and produces high quality
random numbers.  See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html
for more details.

DSFMT_EXP sets the exponent of the period of the RNG.  Allowed values are
521, 1279, 2203, 4253, 11213, 19937, 44497, 86243,
132049 and 216091 and lead to, for example, random numbers with a period of
a Mersenne Prime such as \(2^{521}-1\).



	ENABLE_SHMEM_POSIX

	Default: not defined.  Only relevant when PARALLEL is defined.

If defined, then use POSIX functions to allocate large arrays using shared memory
(i.e. once per node rather than once per processor).  This depends upon having access
to various system-level functionality and so, depending upon local configuration, may
not work when run as a non-privileged user (and hande should not be run by
privileged users!).  As a result, we recommend using MPI 3 instead of this where
possible.  This may require the rt library to be added to the link line.



	NAGF95

	Default: not defined.

If defined then code specific to, and necessary for compilation using, the
NAG Fortran compiler is included.



	PARALLEL

	Default: not defined.

Include source code required for running in parallel.



	SINGLE_PRECISION

	Default: not defined.

Set the precision (where possible) to be single precision.  The default is
double precision.  This is faster, but (of course) can change results
significantly.  Use with care.



	USE_POPCNT

	Default: not defined.

Use the intrinsic popcnt function instead of the version implemented in HANDE.

An important procedure involves counting the number of set bits in an integer.  HANDE
includes a very efficient, branchless procedure to do this.  However, the Fortran
2008 standard includes an intrinsic function, popcnt, for this exact operation.
The performance of this intrinsic will be implementation-dependent and, with
standard compilation flags, we expect the HANDE version to be competitive or more
performant, based upon some simple tests.  The key difference is on modern
processors containing the popcnt instruction: the popcnt intrinsic can then
make use of this instruction and will be much faster than the implementation
in HANDE.  The existence of the popcnt instruction can be found, on Unix
and Linux platforms, by inspecting the flags field in /proc/cpuinfo: if
it contains popcnt, then the processor contains the popcnt instruction.

Using the popcnt instruction often involves a compiler-specific flag to
tell the compiler to use that instruction set; often compilers include the
popcnt instruction with the flag that specifies the use of the SSE4.2
instruction set.  The use of the popcnt instruction can be tested using
objdump.  For example:

$ objdump -d bin/hande.x | grep popc
0000000000400790 <__popcountdi2@plt>:
  400931:e8 5a fe ff ff         callq  400790 <__popcountdi2@plt>





indicates that HANDE is using a compiler-supplied function for popcnt.  Exact output
(especially the function name) is compiler dependent.  In contrast:

$ objdump -d bin/hande.x | grep popc
  4008ac:f3 0f b8 c0            popcnt %eax,%eax





indicates HANDE is using the popcnt instruction.  If the above command does not give
any output, then USE_POPCNT has most likely not been defined.







Compiler and library issues

We attempt to work round any compiler and library issues we encounter but sometimes this
is not possible.  Issues and, where known, workarounds we have found are:


	gcc 6.3.0 has a code generation bug which causes incorrect energies for all molecular
QMC calculations. Please use either a later version of gcc (either 6.4.0 or 7.1.0 do not
have this problem) or a different compiler or an optimisation level no higher than
-O0. Warning: the latter is very slow! See
https://gcc.gnu.org/ml/fortran/2017-05/msg00074.html and the subseuqent discussion for
more details.


	gcc 7.1.0 has a bug that prevents reading in molecular integrals correctly and instead
causes HANDE to exit with an error.
See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80741 for details. A mitigation has
been implemented to avoid this.


	gcc 7.1.0 and 7.2.0 have a bug that causes c_associated to sometimes return incorrect
values. This might affect the error reporting from reading a restart file but should not
cause any problems under normal usage. If affected, the only workaround is to use
a later version of gcc or a different compiler. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82869 for more details.


	gcc 7.3.0 (and possibly earlier) has a bug affecting inquire on internal units.
A workaround is in place for gcc 7.3.0. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84412 for more details.


	HDF5 1.8.14 (and possibly 1.8.13) has a bug revealed by Intel compilers v15 onwards.
This results in unusual error messages and/or segmentation faults when writing out
restart files.  Possibly workarounds:


	use HDF5 1.8.15 (best).


	recompile HDF5 with -assume nostd_value.


	recompile HDF5 with an earlier version of the Intel compilers.


	recompile HANDE with HDF5 support disabled.






	Compiling with GCC and linking the Intel MKL library leads to segmentation faults or
incorrect answers for FCI calculation on systems with complex-valued integrals when
run in parallel.  Either use a different ScaLAPACK library, or use the Intel compilers.


	Recent versions of Intel MKL do not support recent versions of OpenMPI (including
OpenMPI 1.10 and 2.x families), and OpenMPI has a long-standing issue with certain
datatypes. This results in MPI_ERR_TRUNCATE in parallel FCI calculations. Either use
a different ScaLAPACK library or a different MPI implementation or use --mca coll
^tuned as an argument to mpirun/mpiexec.  See
https://github.com/open-mpi/ompi/issues/3937 for more details.


	Using some versions of Intel MPI 5.1 with very large molecular systems (more than 2GB of
integrals) causes crashes due to an overflow in a broadcast operation.  This is fixed in 5.1.3.


	Intel 2017 compilers, MKL 2017 and OpenMPI 1.10 or later cause segmentation faults in
FCI calculations in parallel (see
https://software.intel.com/en-us/forums/intel-math-kernel-library/topic/734559 for more
details). QMC calculations are unaffected. Either use MKL 2016 or an alternative MPI
library (MPICH is not affected by this issue) or only perform QMC calculations.


	Linking lua depends on how it was compiled. Errors of the type

liblua.a(loadlib.o): undefined reference to symbol dlclose@@GLIBC_2.2.5





indicate that lua requires dynamic loading and requires -ldl to be added to the link
line (libs in the config file).









          

      

      

    

  

    
      
          
            
  
Test suite

HANDE has an extensive test suite covering all core functionality.
The tests are run using the testcode package (https://github.com/jsspencer/testcode).
Note that the data extraction scripts for HANDE require the pandas python library.

testcode can be run from the test_suite subdirectory:

$ testcode.py





As the full test suite is extensive, it can take a long time to run, so the quick
and even shorter vquick categories are provided that aim to test most functionality
but run in a few minutes.  By default the only the quick tests are run.  The entire test suite is
run every week in a mirrored GitLab repository (https://gitlab.developers.cam.ac.uk/ch/thom/hande-public-testing),
using the latest GNU and Intel compilers. The quick tests are also run on every push to the master branch.

Selected data from the HANDE output is compared to known ‘good’ results
(‘benchmarks’).

testcode is quite flexible and it’s easy to run subsets of tests, check against
different benchmarks, compare previously run tests, run tests concurrently for
speed, etc.  Please see the testcode documentation for more details.


Note

For algorithmic reasons, certain compilation and runtime options (principally
POP_SIZE and processor/thread count) result in different Markov chains
and hence different exact results (but same results on average).  The tests
should therefore be run using the same compilation options and the same
parallel distribution as was used for the benchmarks.  The latter for MPI
parallelisation is done automatically by testcode.  Separate tests exist
for both POP_SIZE=32 and POP_SIZE=64.

Similarly, the tests will not pass to default accuracy if using SINGLE_PRECISION.
There is a single_precision category, consisting of the tests which will pass with
a tolerance set to \(10^{-5}\).

Currently there are no QMC tests suitable for OpenMP parallelisation due to
difficulties with making the scheduler behave deterministically without
affecting performance of production simulations.
It is advised that you make sure to set the shell variable OMP_NUM_THREADS
to 1 when running the test suite - otherwise these will all be marked SKIPPED.




What if the tests fail?

A common cause for tests failing is that the configuration causes a different Markov
Chain to be run, or part of the code has been disabled in your build.
testcode should determine that some tests are inappropriate and skip them.
To force testcode to skip some tests, see below.

A second cause of failure is that some floating point values have rounded differently on
different architectures.
The tolerances used for the tests can also be adjusted as specified below:



Skipping Tests

If there is a unique line printed out in the output for jobs which are to be skipped,
this can be used to tell testcode this, by modifying the skip_args line in the
test_suite/userconfig file.  See the testcode documentation for more details



Adjusting Test Tolerances

The tolerance for an individual job can be modified as specified in the testcode documentation.
As an example, to modify the tolerance because of the following failure:

dmqmc/np1/heisenberg_1d - replica.in: **FAILED**.
\sum\rho_{ij}M2{ji}
    ERROR: absolute error 1.00e-06 greater than 1.00e-10. (Test: 17.378583.  Benchmark: 17.378584.)





The follow section can be inserted into test_suite/jobconfig.  Note the backslash-quoting of the
backslashes, as the tolerance value is interpreted as a python tuple containing a python string.

#Job specific tolerances:
[dmqmc/np1/heisenberg_1d/]
tolerance = (1e-5,1e-5,'\\sum\\rho_{ij}M2{ji}')









          

      

      

    

  

    
      
          
            
  
Usage

$ hande.x [input_filename]





Output is sent to STDOUT and can be redirected as desired.


Parallel Usage

Using MPI only:

$ mpirun -np n hande.x [input_filename]





where n is the number of processors to run on in parallel. On an HPC system this may
differ (for example mpirun -np n may be replaced with mpiexec), depending on how the
environment has been set up.

Using OpenMP parallelism:

$ export OMP_NUM_THREADS=n
$ hande.x [input_filename]





OpenMP parallelism is currently only implemented for CCMC.

Using OpenMP and MPI parallelism:

$ export OMP_NUM_THREADS=n
$ mpirun -np m hande.x [input_filename]





where m is the number of MPI processes and n is the number of OpenMP threads per
MPI process.  HANDE prints this information at the top of the output, so one can easily
check there environment is set up correctly.

HANDE only performs I/O operations on the root processor when run on multiple processors.


Note

Due to the implementation of efficient Monte Carlo algorithms, running the Monte Carlo
algorithms in HANDE on different numbers of processors (or using OpenMP) results in
different Markov chains and hence such calculations will not agree exactly but instead
statistically.







          

      

      

    

  

    
      
          
            
  
Input file

HANDE is controlled via an input file which is a simple lua script.  This has the
advantage of creating a clean, simple interface to HANDE whilst allowing advanced users to
perform complex simulations without requiring parsing complicated (and perhaps bespoke)
logic in a custom input parser.  Future work will include exposing more of HANDE via
the lua API, thus increasing the flexibility available.

Running a simulation typically involves creating a quantum system (i.e. a collection of
spins/fermions/etc acting under a specified Hamiltonian) and then performing one or more
calculations on that system.  Both tasks involve calling functions from the input file.

The following sections detail options available in each system and calculation
function.  Variables can be required (i.e. must be specified if a function is called) or
optional (in which case the default is stated).  The type (e.g. float, such as 1.234;
integer, such as 1; boolean, either true or false) of each variable is also given.


Systems

All functions which create a system return a pointer to a system object (which
currently cannot be manipulated or inspected from lua).  All calculation functions take
this variable as an argument.



	Model lattice systems
	Hubbard model (momentum-space)

	Hubbard model (real-space)

	Heisenberg model

	Chung-Landau model

	Specifying the lattice





	Electron gases
	Uniform electron gas

	Ringium





	Generic systems
	Options











Calculations

All QMC methods (FCIQMC, CCMC, DMQMC and the simple FCIQMC implementation)
return a pointer to a qmc_state object (which cannot be directly manipulated or
inspected from lua) as the first return value.  They also accept such an object as an
optional argument to resume a previous QMC calculation.  Additional,
calculation-specific, values are returned in some cases, as described in the relevant
section.



	Full Configuration Interaction

	Monte Carlo estimate of size of the Hilbert space

	Canonical total energy

	Full Configuration Interaction Quantum Monte Carlo

	Coupled Cluster Monte Carlo

	Density Matrix Quantum Monte Carlo

	Full Configuration Interaction Quantum Monte Carlo (simple)

	Common options







Utilities



	Utilities
	Redistribution of restart files

	MPI information

	Memory management

	Write HDF5 system file











Appendix



	A short introduction to lua

	Cookbook
	Twist Averaging













          

      

      

    

  

    
      
          
            
  
Model lattice systems


Hubbard model (momentum-space)

hubbard_k {
    -- options,
}






	Returns:

	a system object.





hubbard_k creates a system object for the Hubbard model:


\[H = -t \sum_{\langle r,r' \rangle,\sigma} c^\dagger_{r,\sigma} c_{r',\sigma} + U \sum_r n_{r,\uparrow} n_{r,\downarrow}\]

using a single-particle basis of Bloch functions, \(\psi_k\):


\[\psi_k(r) = e^{ik.r} \sum_i \phi_i(r)\]

where \(\phi_i(r)\) is a single-particle basis function centred on site \(i\)
in real space.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer.

Required.

Number of electrons in the unit cell.



	lattice

	type: \(N\ N\)-dimensional vectors of floats.

Required.

Unit cell on which periodic boundary conditions are placed.  See below.



	ms

	type: integer.

Required.

Set the spin polarisation of the system in units of electron spin (i.e. a single
electron can take values 1 or -1).



	sym

	type: integer or string.

Optional. Default: aufbau.

Set the symmetry (i.e. crystal momentum) of the system if a reference determinant is
not provided. This can be set to:


	An integer specifying the index of a specific wavevector; see the output produced by creating a system for possible
values and their corresponding wavevectors.


	aufbau. Uses the symmetry of a determinant selected using the Aufbau principle.


	tot_sym. Uses the totally symmetric representation, whatever its index may be.






	U

	type: float.

Optional.  Default: 1.

Specifies the \(U\) parameter in the Hamiltonian.



	t

	type: float.

Optional.  Default: 1.

Specifies the \(t\) parameter in the Hamiltonian.



	twist

	type: \(N\)-dimensional vector

Optional.  Default: 0 in each dimension.

Apply a twist to the wavevector grid.  The twist is an ndim-dimensional vector in
terms of the reciprocal lattice vectors.  The twist angle is chosen to be within the
primitive reciprocal cell, and hence the components should be between -0.5 and +0.5.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.








Hubbard model (real-space)

hubbard_real {
    -- options,
}






	Returns:

	a system object.





hubbard_real creates a system object for the Hubbard model:


\[H = -t \sum_{\langle r,r' \rangle,\sigma} c^\dagger_{r,\sigma} c_{r',\sigma} + U \sum_r n_{r,\uparrow} n_{r,\downarrow}\]

using a single-particle basis of functions in real-space.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer.

Required.

Number of electrons in the unit cell.



	lattice

	type: \(N\ N\)-dimensional vectors of floats.

Required.

Unit cell on which periodic boundary conditions are placed.  See below.



	ms

	type: integer.

Required.

Set the spin polarisation of the system in units of electron spin.



	U

	type: float.

Optional.  Default: 1.

Specifies the \(U\) parameter in the Hamiltonian.



	t

	type: float.

Optional.  Default: 1.

Specifies the \(t\) parameter in the Hamiltonian.



	finite

	type: boolean.

Optional.  Default: false.

If false then periodic boundary conditions are applied to the unit cell, otherwise the
system specified by the lattice is treated as an isolated set of sites.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.








Heisenberg model

heisenberg {
    -- options,
}






	Returns:

	a system object.





heisenberg creates a system object for the Heisenberg model, which models a set of
spin 1/2 particles on a lattice:


\[\hat{H} = -J \sum_{\langle i,j \rangle} \hat{\boldsymbol{S}}_i \cdot \hat{\boldsymbol{S}}_j  - h_z \sum_i \hat{S}_{iz} - h_z' \sum_i \hat{S}_{iz}^{\xi},\]

where \(h_z\) and \(h_z'\) denote the magnetic field strength and
staggered magnetic field strength, respectively, and \(\xi\)
is equal to +1 for sites on sublattice 1 and is equal to -1 for sites on
sublattice 2.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	lattice

	type: \(N\ N\)-dimensional vectors of floats.

Required.

Unit cell on which periodic boundary conditions are placed.  See below.


Warning

For efficiency reasons it is assumed that the smallest dimension lattice vector is
greater than 2 if periodic boundary conditions are used.





	ms

	type: integer.

Required.

Set the spin polarisation of the system in units of 1/2.



	J

	type: float.

Optional.  Default: 1.

Set the coupling constant for the Heisenberg model.



	magnetic_field

	type: float.

Optional.  Default: 0.



	staggered_magnetic_field

	type: float.

Optional.  Default: 0.


Note

Specifying non-zero values for both magnetic_field and staggered_magnetic_field
is not currently possible.





	finite

	type: boolean.

Optional.  Default: false.

If false then periodic boundary conditions are applied to the unit cell, otherwise the
system specified by the lattice is treated as an isolated set of sites.



	triangular

	type: boolean.

Optional.  Default: false.

If true, then a triangular lattice of sites on which the spins reside is used,
requiring a 2D lattice.  The default is to use a \(N\)-dimensional cubic
arrangement of sites.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.








Chung-Landau model

chung_landau {
    -- options,
}






	Returns:

	a system object.





chung_landau creates a system object for the system of spinless fermions proposed by
Chung and Landau:


\[H = -t \sum_{\langle r,r' \rangle} c^\dagger_{r} c_{r'} + U \sum_{\langle r,r' \rangle} n_{r} n_{r'}\]

using a single-particle basis of functions in real-space.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer.

Required.

Number of fermions in the unit cell.



	lattice

	type: \(N\ N\)-dimensional vectors of floats.

Required.

Unit cell on which periodic boundary conditions are placed.  See below.



	U

	type: float.

Optional.  Default: 1.

Specifies the \(U\) parameter in the Hamiltonian.



	t

	type: float.

Optional.  Default: 1.

Specifies the \(t\) parameter in the Hamiltonian.



	finite

	type: boolean.

Optional.  Default: false.

If false then periodic boundary conditions are applied to the unit cell, otherwise the
system specified by the lattice is treated as an isolated set of sites.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.








Specifying the lattice

The lattice is specified as a table of vectors.  Sites (on which a spin or electron
resides) are at unit locations on the grid.  The unit cell (or, if periodic boundary
conditions are not used, the geometry of the ‘flake’ essentially cut out of the infinite
lattice) are given in this basis.  The lattice variable hence requires \(N\) vectors,
each of dimension \(N\).  This is specified in lua by a nested table.  For example:

lattice = { { 10 } }





sets a 1D system, with the unit cell containing 10 sites;

lattice = { { 2, 0 }, { 0, 2 } }





sets a 2D system, with the unit cell containing 4 sites; and

lattice = { { 3, 3 }, { 3, -3 } }





sets a 2D system, with the (square) unit cell containing 18 sites and rotated by
\(45^\circ\) relative to the primitive lattice.

HANDE supports 1-, 2- and 3-dimensional lattices.  Lattice vectors must be orthogonal.





          

      

      

    

  

    
      
          
            
  
Electron gases

An electron gas contains interacting electrons in some geometry with a constant
compensating positive charge.


Uniform electron gas

ueg {
    -- options,
}






	Returns:

	a system object.





ueg creates a system object for the (conventional) electron gas:


\[H = -\frac{1}{2} \sum_i \nabla_i^2 + \sum_{i<j} \frac{1}{r_{ij}}\]

(including an appropriate uniform background potential to counteract the charge),
using a single-particle basis of plane waves, \(\psi_{\bf k} = e^{i {\bf k}.{\bf r}}\).


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer.

Required.

Number of electrons in the unit cell.



	ms

	type: integer.

Required.

Set the spin polarisation of the system in units of electron spin (i.e. a single
electron can take values 1 or -1).



	sym

	type: integer or string.

Optional. Default: aufbau.

Set the symmetry (i.e. crystal momentum) of the system if a reference determinant is
not provided. This can be set to:


	An integer specifying the index of a specific wavevector; see the output produced by creating a system for possible
values and their corresponding wavevectors.


	aufbau. Uses the symmetry of a determinant selected using the Aufbau principle.


	tot_sym. Uses the totally symmetric representation, whatever its index may be.






	rs

	type: float.

Optional.  Default: 1.

Set the density, \(r_s\), of the UEG.



	cutoff

	type: float.

Optional.  Default: 3.

Set the maximum kinetic energy of the orbitals included in the basis set.

Note that this is in scaled units of \((2\pi/L)^2\), where \(L\) is the
dimension of simulation cell defined by electrons and rs and is compared to
the kinetic energy of each plane-wave without the twist angle included.  In
this way the cutoff can be kept constant whilst the twist is varied and the
basis set used will remain consistent.



	dim

	type: integer.

Optional.  Default: 3.

Set the dimension of the electron gas.  2- and 3-dimensional gases are implemented.



	twist

	type: \(N\)-dimensional vector

Optional.  Default: 0 in each dimension.

Apply a twist to the wavevector grid.  The twist is an ndim-dimensional vector in
terms of the reciprocal lattice vectors.  The twist angle is chosen to be within the
primitive reciprocal cell, and hence the components should be between -0.5 and +0.5.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.








Ringium

ringium {
    -- options,
}






	Returns:

	a system object.





Ringium [Loos13], is a 1D system of electrons confined to a ring of radius \(R\):


\[H = -\frac{1}{2R^2} \sum_i \frac{\partial^2}{\partial\theta_i^2} + \sum_{i<j} \frac{1}{r_{ij}}\]

where \(r_{ij} = R\sqrt{2-2\cos(\theta_i-\theta_j)}\), using a single-particle
basis of functions \(\psi_n = e^{i n \theta}\).  As it is 1D, the different
spin polarisations are degenerate, so without loss of generality all electrons
are forced to be spin up.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer

Required.

Number of electrons in the system.



	radius

	type: float

Required.

The radius of the ring.



	maxlz

	type: integer

Required.

The maximum angular momentum of the orbitals used in the basis set.

Note that this is in units of \(\frac{\hbar}{2}\) and must have opposite
parity to the number of electrons.



	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.










          

      

      

    

  

    
      
          
            
  
Generic systems

read_in {
    -- options
}






	Returns:

	a system object.





A generic system, including atoms and molecules, can be specified by providing a file
containing information about the single-particle basis set and the one- and two-body
integrals between these basis functions.  This file is in FCIDUMP format
[Knowles89], which can be produced by several quantum chemistry packages including
MOLPRO, Q-Chem (via additions from Alex Thom) and PSI4 (via a plugin from James Spencer).
See Generating integrals for more details.


Options


	sys

	type: system object produced by a previous call.

Optional.

If provided, a previously created system object is updated with the new settings
supplied, otherwise a new system object is created.



	electrons

	type: integer.

Optional.  If specified, then ms must be specified.

Number of electrons in the unit cell.  If not provided, the value in the FCIDUMP file is used.



	ms

	type: integer.

Optional.  If specified, then electrons must be specified.

Set the spin polarisation of the system in units of electron spin (i.e. a single
electron can take values 1 or -1).  If not provided, the value in the FCIDUMP file is used.



	sym

	type: integer or string.

Optional. Default: aufbau.

Set the symmetry of the system if a reference determinant is not provided. This can be
set to:


	An integer specifying the index of a specific irreducible representation from the FCIDUMP
file; see the output produced by creating a system for possible values.


	aufbau. Uses the symmetry of a determinant selected using the Aufbau principle.


	tot_sym. Uses the totally symmetric representation, whatever its index may be.;






	Lz

	type: boolean.

Optional.  Default: false.

If true, enable \(L_z\) symmetry.  See below for details.



	int_file

	type: string.

Optional.  Default: ‘FCIDUMP’.

Specify the FCIDUMP file containing the integrals and information relating to the
single-particle basis. For details of the format see FCIDUMP format.
This can also be an HDF5 file previously produced by HANDE from a FCIDUMP via the
write_read_in_system function (see Write HDF5 system file), which is
both more compact in size and considerably faster to process.



	dipole_int_file

	type: string.

Optional.  No default.

Specify a FCIDUMP-like file containing the dipole integrals, i.e. \(\langle i | x | i \rangle\), in a given direction.

Not currently used.



	CAS

	type: 2D-vector of integers.

Optional.  No default.

If specified, then the basis set is restricted to a given complete active space,
whereby CAS = {N,M} corresponds to allowing only \(N\) electrons to be distributed
among \(2M\) spin orbitals.  Any additional electrons are ‘frozen’ (i.e. forced to
be in the lowest spin orbitals) and any additional high-energy spin orbitals are
removed from the basis set.


Warning

This functionality is not compatible with reading from an HDF5 file; to use a CAS
in combination with HDF5 initialisation, create the HDF5 file using a system with
the desired CAS.





	verbose

	type: boolean.

Optional.  Default: true.

Print out the single-particle basis set.



	complex

	type: boolean.

Optional. Default: false.

Specify if the calculation should use complex dynamics in any calculation performed,
and if the FCIDUMP supplied is complex-formatted. Currently compatible with
fci, fciqmc, ccmc and dmqmc (including ip-dmqmc) calculations.



	max_integral_chunk

	type: integer

Optional. Default \(2^{31} - 1\).

Maximum number of MPI objects to broadcast in a single call for two body integrals.
Above this value a contiguous MPI type is used instead.


Warning

This functionality is included only for ease of testing. It should not be used
for production calculations.








\(L_z\) symmetry

For cylindrically symmetrical systems, the \(L_z\) (z-component of orbital angular momentum)
operator commutes with the Hamiltonian, and this can be a convenient symmetry to conserve.
\(L_z\) is measured in units of \(\hbar\).  Normal FCIDUMP files do not contain orbitals
which are eigenfunctions of the \(L_z\) operator, so they must be transformed using
post-processing.  The TransLz  script from the NECI [https://github.com/ghb24/NECI_STABLE]
project can be used for this purpose. The FCIDUMP file header format has been modified to include
additional parameters: SYML, and SYMLZ which have a list of values, one for each orbital.

SYML gives the magnitude of L for the orbital if known (or -20 if not) but is not used.

SYMLZ give the eigenvalue of \(L_z\) (the \(m_l\) value).  Orbitals with defined values of
\(L_z\) are likely to be complex-valued, but luckily the integrals involving them are not, so
althoughthe FCIDUMP file must be translated, it still retains the same format (see comments in
src/read_in.F90, src/molecular_integrals.F90 and FCIDUMP format for details if you wish to create
FCIDUMP files by other means).


Warning

These transformed integral files require you to enforce \(L_z\) symmetry and will produce
incorrect results if you do not.








          

      

      

    

  

    
      
          
            
  
Full Configuration Interaction

Calculate the ground state of a system via a full diagonalisation of the Hamiltonian matrix [Knowles89].

fci {
    sys = system,
    fci = { ... },
    reference = { ... },
}






Note

The FCI engine in HANDE is particularly simple (i.e. slow, dumb, memory hungry) and is
designed mainly for testing.  A conventional quantum chemistry package, such as
MOLPRO, or PSI4, is highly recommended for production FCI calculations as these
implement substantially more efficient algorithms.




Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	fci

	type: lua table.

Optional.  No default.

Further FCI options.  See below.



	reference

	type: lua table.

Optional.  No default.

If not specified, the entire Hilbert space is used.  See reference options.







fci options

The fci table can take the following options:


	write_hamiltonian

	type: boolean.

Optional.  Default: false.

Write out the diagonal and the non-zero off-diagonal elements of the Hamiltonian
matrix.



	hamiltonian_file

	type: string.

Optional. Default: ‘HAMIL’.

Filename to which the Hamiltonian matrix is written.



	write_determinants

	type: boolean.

Optional.  Default: false.

Write out the enumerated list of determinants in the FCI Hilbert space.



	determinant_file

	type: string.

Optional. Default: ‘DETS’.

Filename to which the list of determinants (or, more generally, many-body
basis functions) is written.



	write_nwfns

	type: integer.

Optional.  Default: 0.

Number of wavefunctions to write out (in the basis of Slater determinants).
A negative value indicates all wavefunctions are to be written out.



	wfn_file

	type: string.

Optional. Default: ‘FCI_WFN’.

Filename to which the wavefunctions are written.



	nanalyse

	type: integer.

Optional.  Default: 0.

Calculate properties of the first nwfn FCI wavefunctions from each spin and
symmetry block.  If nwfn is negative (default) then all wavefunctions are
analysed.  This is slow, and uses a very simple algorithm.  It is only
designed for debugging purposes.  The properties evaluated depend upon the system
and are liable to change without warning.



	blacs_block_size

	type: integer.

Optional.  Default: 64.

The block size used by BLACS to distribute the Hamiltonian matrix across the
processors with MPI parallelism.  The Hamiltonian matrix is divided into \(n
\times n\) sub-matrices, where \(n\) is the block size, which are the distributed
over the processors in a cyclic fashion.



	rdm

	type: table of integers.

Optional.  No default.

If present, calculate the eigenvalues for the reduced density matrix consisting of the
specified list of sites, with a trace performed over all other sites.


Note

The rdm option is only currently available for Heisenberg systems.








Note

The write_wfn, nanalyse and rdm options require the eigenvectors to be
calculated in addition to the eigenvalues, which requires additional computational
time.







          

      

      

    

  

    
      
          
            
  
Monte Carlo estimate of size of the Hilbert space

Whilst calculating the size of an entire Hilbert space is straightforward via
combinatorics, calculating the size of a specific part of the Hilbert space meeting
a given set of quantum numbers (e.g. spin and symmetry) is more challenging.  Instead,
the size of this subspace can be estimated via a simple Monte Carlo approach [Booth10].

hilbert_space {
    sys = system,
    hilbert = { ... },
    output = { ... },
}






	Returns:

	a table containing the mean (key: mean) and associated standard
error (key: std. err.) of the Monte Carlo estimate of the size of
the Hilbert space.






Options

All options should be in the hilbert table bar the sys option.


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	hilbert

	type: lua table.

Required.

Further options to control the Monte Carlo estimation of the Hilbert space.  See
below.



	output

	type: lua_table.

Optional.

Further options to enable direction of calculation output to a different file.
See output options for more information.







hilbert options

The hilbert table can take the following options:


	nattempts

	type: integer.

Required.

Number of random attempts (i.e. the number of random determinants to generate) to
perform per Monte Carlo cycle.



	ncycles

	type: integer

Optional.  Default: 20.

Number of Monte Carlo cycles to perform.  Each cycle produces an independent estimate
of the Hilbert space size.  Estimates of the mean and standard error are automatically
calculated from each independent value.



	rng_seed

	type: integer.

Optional.  Default: generate a seed based upon the time and UUID (if available).

Seed for initialising the random number generator.



	reference

	type: vector of integers.

Optional.  Default: attempt to make a good guess based upon the spin and symmetry
quantum numbers of the system.

The reference determinant as a list of occupied spin-orbitals.  The reference
determinant is used in the generation of truncated Hilbert spaces only.



	ex_level

	type: integer.

Optional.  Default: set to the number of electrons in the system (i.e. generate the
FCI space).

Maximum excitation level to consider relative to the reference determinant.









          

      

      

    

  

    
      
          
            
  
Canonical total energy

canonical_estimates {
    sys = system,
    canonical_estimates = { ... },
}





canonical_estimates calculates various estimates for properties of a system in the
canonical ensemble at a given temperature, using knowledge of the grand canonical ensemble
and the single-particle eigenvalues of the underlying non-interacting system.  See
[Malone15] for details. Currently only implemented for the UEG and read_in.


Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	canonical_estimates

	type: lua table.

Required.

Further options controlling the calculation.







kinetic options


	ncycles

	type: integer.

Required.

The number of Monte Carlo iterations to perform.  Each iteration produces
independent estimates based upon the nattempts made.



	nattempts

	type: integer.

Required.

Number of determinants within the canonical ensemble we attempt to generate each Monte
Carlo cycle.



	beta

	type:  float.

Required.

The temperature of the system.



	fermi_temperature

	type: boolean.

Optional.  Default: false.

If true, rescale beta as the inverse reduced temperature: \(\tilde{\beta} = 1/\Theta = T_F/T\),
where \(T_F\) is the Fermi temperature.  If false, beta is taken to be in
atomic units.



	rng_seed

	type: integer.

Optional.  Default: generate a seed from a hash of the time and calculation UUID.

The seed used to initialise the random number generator.









          

      

      

    

  

    
      
          
            
  
Full Configuration Interaction Quantum Monte Carlo

fciqmc {
    sys = system,
    qmc = { ... },
    fciqmc = { ... },
    semi_stoch = { ... },
    restart = { ... },
    reference = { ... },
    load_bal = { ... },
    logging = { ... },
    output = { ... },
    blocking = { ... },
    qmc_state = qmc_state,
}






	Returns:

	a qmc_state object.





fciqmc performs a full configuration interaction quantum Monte Carlo (FCIQMC)
calculation [Booth09] on a system.


Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	qmc

	type: lua table.

Required.

Further options that are common to all implemented QMC algorithms.  See
qmc options.



	fciqmc

	type: lua table.

Optional.

Further options to control the FCIQMC algorithm.  See fciqmc options.



	semi_stoch

	type: lua table.

Optional.

Further options to control using a semi-stochastic projection of the Hamiltonian
operator instead of a purely stochastic projection.  Note that some options in the
semi_stoch table are required to be set if the table is given.  See
semi_stoch options.



	restart

	type: lua table.

Optional.

Further options to control restarting the calculation from a previous calculation.
See restart options.



	reference

	type: lua table.

Optional.

Further options to select the reference state used.  See reference options.



	load_bal

	type: lua table.

Optional.

Further options to improve the parallel load balancing of an FCIQMC simulation.  If
present (even if empty) an advanced load-balancing algorithm is used
[Malone16a].  See load_bal options for more details.



	logging

	type: lua table.

Optional.

Further options to enable various logging outputs from a FCIQMC simulation. Only
available when compiled in debug mode. See logging options for information
on current options.



	output

	type: lua_table.

Optional.

Further options to enable direction of calculation output to a different file.
See output options for more information.



	blocking

	type: lua table.

Optional.

Further options to switch on and control blocking on the fly. See blocking options.



	qmc_state

	type: qmc_state object.

Optional.

Output of a previous calculation to resume.


Warning

The qmc_state object must have been returned by a previous FCIQMC calculation.
The validity of this is not checked.  The system must also be unchanged.




Warning

This destroys the qmc_state object and so it cannot be re-used in subsequent
QMC calculations.









fciqmc options


	select_reference_det

	type: boolean or Lua table.

Optional.  Default: false.

If true or if a lua table is provided, attempt to automatically set the reference
state to be the state with the greatest population.  A lua table can contain the
following options and need only be provided in order to modify the defaults.


Note

Care should be take when analysing the projected estimator to ensure that
all quantities averaged have the same reference state.




Warning

Excitation levels are relative to the reference state and hence this should
not be used with a truncated CI calculation.




	update_every

	type: integer

Optional.  Default: 20.

The number of report loops between attempts to update the reference state.



	pop_factor

	type: float.

Optional.  Default: 1.5.

The factor of the reference population another state must have in order for the
reference to be changed.  This helps prevent continually switching between states
with similar or degenerate populations.







	non_blocking_comm

	type: boolean.

Optional.  Default: false.

Use non-blocking MPI communications instead of blocking MPI communications.


Note

This is an experimental option and may or may not improve performance.  In
particular, its efficiency is highly dependent upon architecture and MPI
implementation.  For expert use only!





	load_balancing

	type: boolean.

Optional.  Default: false.

Enable dynamic load balancing of determinants among processors. This will move
determinants to try and keep the number of walkers on each processor roughly
constant. See load_bal options for more details.



	init_spin_inverse_reference_det

	type: boolean.

Optional.  Default: false.

In addition to initialising the reference determinant with an initial
population, initialise the spin-inversed determinant (if different) with
the same population.  Overridden by a restart file.



	trial_function

	type: string.

Optional.  Default: ‘single_basis’.

Possible values: ‘single_basis’, ‘neel_singlet’ (Heisenberg model only).

The trial function to use in the projected energy estimator.  ‘single_basis’
uses the single reference state as the trial function.  ‘neel_singlet’ uses the Neel
singlet state, \(|NS \rangle = \sum_{i} a_i |D_i \rangle\), where the amplitudes
\(a_i\) are defined in K. Runge, Phys. Rev. B 45, 7229 (1992).

Using a multi-reference trial function can substantially reduce stochastic noise.



	guiding_function

	type: string.

Optional.  Default: ‘none’.

Possible values: ‘none’, ‘neel_singlet’ (Heisenberg model only).

The importance sampling transformation to apply to the Hamiltonian.

‘neel_singlet’ uses the Neel singlet state (K. Runge, Phys. Rev. B 45, 7229 (1992))
to transform the Hamiltonian such that the matrix elements, \(H_{ij}\), are
replaced with \(a_i H_{ij} / a_j\). Using ‘neel_singlet’ automatically sets
trial_function to ‘neel_singlet’.



	replica_tricks

	type: boolean.

Optional.  Default: false.

Perform replica simulations (i.e. evolve two independent FCIQMC simulations
concurrently).







load_bal options

The default values are usually sufficient if load balancing is enabled.  It is highly
recommended to only attempt to improve load balancing for large calculations and once the
population has been stabilised by the shift.  It may be easiest to do this by monitoring
a calculation carefully until this condition is reached, producing a restart file and then
running a production calculation with load balancing enabled.


	nslots

	type: integer.

Optional.  Default: 20.

The average number of slots per processor used to distribute the list of occupied
states via a hashing of the states.  A large value will affect performance but could
potentially result in a better distribution of walkers.



	min_pop

	type: integer.

Optional.  Default: 1000.

The minimum total population required before load balancing is attempted.  This is
a system dependent value and, in order to maximise performance improvements, should be
set such that the population is roughly stable.



	target

	type: float.

Optional.  Default: 0.05.

Desired imbalance (as a percentage of the average population per processor) between
the most and least populated processors.  Note that the workload on a processor is not
entirely determined by its population and that, due to the algorithms used, an
arbitrary small population imbalance is not usually possible.



	max_attempts

	type: integer.

Optional.  Default: 2.

The number of attempts to make to improve load balancing.  Often multiple attempts can
improve the balancing but each attempt may be non-negligible and there are usually
diminishing returns.



	write

	type: boolean.

Optional.  Default: false.

Write out the population of the most and least heavily populated processor
before and after load balancing is carried out. Also print out the
minimum slot population on the most populated processor which will
indicate if load balancing is possible.









          

      

      

    

  

    
      
          
            
  
Coupled Cluster Monte Carlo

ccmc {
    sys = system,
    qmc = { ... },
    ccmc = { ... },
    restart = { ... },
    reference = { ... },
    logging = { ... },
    output = { ... },
    blocking = { ... },
    qmc_state = qmc_state,
}






	Returns:

	a qmc_state object.





ccmc performs a coupled cluster Monte Carlo (CCMC) calculation [Thom10] on a system.


Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	qmc

	type: lua table.

Required.

Further options that are common to all implemented QMC algorithms.  See
qmc options.



	ccmc

	type: lua table.

Required.

Further options to control the CCMC algorithm.  See ccmc options.



	restart

	type: lua table.

Optional.

Further options to control restarting the calculation from a previous calculation.
See restart options.



	reference

	type: lua table.

Optional.

Further options to select the reference state used.  See reference options.



	logging

	type: lua table.

Optional.

Further options to enable various logging outputs from a CCMC simulation. Only
available when compiled in debug mode. See logging options for information
on current options.



	output

	type: lua_table.

Optional.

Further options to enable direction of calculation output to a different file.
See output options for more information.



	blocking

	type: lua table.

Optional.

Further options to switch on and control blocking on the fly. See blocking options.



	qmc_state

	type: qmc_state object.

Optional.

Output of a previous calculation to resume.


Warning

The qmc_state object must have been returned by a previous CCMC calculation.
The validity of this is not checked.  The system must also be unchanged and
must not have a different even selection setting. To switch between using
even selection and not a written restart file must be used.




Warning

This destroys the qmc_state object and so it cannot be re-used in subsequent
QMC calculations.









ccmc options


	move_frequency

	type: integer

Optional.  Default: 5.

Allow excitors to move processors every \(2^x\) iterations, where \(x\) is the
value of move_frequency, in order to allow all composite excitors to be correctly
sampled.  Relevant only when performing CCMC with MPI parallelisation.  A large value
may introduce a bias.  Modify with caution. Can be changed when restarting
calculations (and/or when redistributing restart files) but may impose
some initialisation overhead whilst excitors are reassigned to different processors.



	cluster_multispawn_threshold

	type: float.

Optional.  Default: \(2^{31}-1\).

Set the maximum value of \(A_C/p_C\), where \(A_C\) is the cluster amplitude
and \(p_C\) is the probability of selecting the cluster.  A cluster with a value
above this is split into multiple spawning attempts.  The default value essentially
disables this but a smaller option can substantially reduce population blooms, albeit
potentially at a significant computational cost.


Note

This is an experimental option and feedback is most welcome.  The current
recommendation is to use the smallest setting such that large blooms do not occur.





	full_non_composite

	type: boolean.

Optional.  Default: false.

If true, allow all non-composite clusters to attempt to spawn each iteration.  The
original CCMC algorithm involves randomly selecting a cluster of arbitrary size
consisting of any set of excitors and then making spawning attempts from it.  The full
non-composite algorithm is a simple modification in which all occupied non-composite
clusters (i.e. those consisting of the reference or just a single excitor) are
(deterministically) selected and composite clusters (involving two or more excitors)
are randomly selected to make spawning attempts.  This has been shown to give
substantially more stable dynamics and reduce the plateau height in several systems.



	linked

	type: boolean.

Optional.  Default: false.

If true, sample the linked coupled cluster equations instead of the unlinked coupled
cluster equations [Franklin16].  The original CCMC algorithm solves the equations


\[\langle D_m | \hat{H} - E | \psi_{CC} \rangle = 0.\]

It is possible to instead sample the equivalent equations


\[\langle D_m | e^{-\hat{T}} (\hat{H} - E) | \psi_{CC} \rangle = 0.\]

Using the Hausdorff expansion of the Hamiltonian and the linked cluster theorem means
that the only clusters which contribute are those with at most four excitors and where
the excitation sampled from the Hamiltonian has an orbital in common with each excitor
in the cluster operator. Using this option can give substantial reductions in the
plateau height.



	vary_shift_reference

	type: boolean.

Optional.  Default: false.

Vary the shift to keep the population at the reference, \(N_0\), constant, rather
than the total population \(N_p\).  If target_population is below the plateau
(or an equivalently low reference_target is specified) then, whilst the reference
population will be controlled, the total population will continue to grow until a stable
distribution is reached.



	density_matrices

	type: boolean.

Optional.  Default: false.

Calculate the (unrelaxed) two-electron coupled cluster density matrix, given by:


\[d_{PQRS} = \langle \psi_{HF} | P^{\dagger} R^{\dagger} S Q | \psi_{CC} \rangle\]



	density_matrix_file

	type: string.

Optional.  Default: ‘RDM’.

Filename to which the reduced density matrix is written.



	even_selection

	type: boolean

Optional. Default: false.

If true, use selection probabilities for composite clusters such that the probability
of selecting a cluster of any size is proportional to its contribution to the overall
amplitude of the instantaneous wavefunction representation.


Warning

This algorithm gives drastically different behaviour and is a subject of current
research. As such, the situations in which this is the optimal approach are not yet
entirely clear (benchmarking is underway). In addition, it is not currently confirmed
to be compatible with propagation of the linked coupled cluster equations.





	multiref

	type: boolean.

Optional. Default: false.

If true, perform a coupled cluster calculation using multiple references.[Filip19]_ n_secondary_ref
and secondary_refX must then be defined.



	n_secondary_ref

	type: integer.

Optional.

Number of secondary references used. Must be in the range 1-999.





secondary_refX


Describes the X-th secondary reference state used. See reference options.
Must include at least det and ex_level. One table must be included for each
secondary reference.








          

      

      

    

  

    
      
          
            
  
Density Matrix Quantum Monte Carlo

dmqmc {
    sys = system,
    qmc = { ... },
    dmqmc = { ... },
    ipdmqmc = { ... },
    operators = { ... },
    rdm = { ... },
    restart = { ... },
    reference = { ... },
    qmc_state = qmc_state,
}






	Returns:

	a qmc_state object.
a lua table containing the sampling probabilities found if find_weights is set to true.  This can be passed directly to the weights option of a subsequent DMQMC calculation and/or manipulated inside the lua script.  If find_weights is false, only the qmc_state object is returned.





dmqmc performs a density matrix quantum Monte Carlo (DMQMC) calculation on a system.

Unlike Coupled Cluster Monte Carlo and Full Configuration Interaction Quantum Monte Carlo, where quantities are averaged inside each report
loop, any quantities in DMQMC are evaluated at the first iteration of the report loop
only. This is because different iterations represent different temperatures in DMQMC,
and so averaging over a report loop would average over different temperatures, which is
not the desired behaviour.


Note

Density Matrix Quantum Monte Carlo is currently rather experimental.  In particular,
it is not implemented for all systems yet and some options are only implemented for
specific systems. In particular, DMQMC is only implemented for the Heisenberg model, the UEG,
the real and momentum-space Hubbard model, and for molecular systems. The evaluation of operators
other than the total energy, such as correlation functions and entanglement measures,
is currently only possible for the Heisenberg model. The calculation of the reduced
density matrices from DMQMC is also only supported for the Heisenberg model (for both
temperature-dependent and ground state RDM calculations).




Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	qmc

	type: lua table.

Required.

Further options that are common to all implemented QMC algorithms.  See
qmc options.



	dmqmc

	type: lua table.

Optional.

Further options to control the DMQMC algorithm.  See dmqmc options.



	ipdmqmc

	type: lua table.

Optional.

If set, even to an empty table, then interaction picture DMQMC [Malone15] is
performed.  The table can contain further options to control the IP-DMQMC algorithm.
See ipdmqmc options.



	operators

	type: lua table.

Optional.

Further options to select the operators for which expectation values are evaluated.
See operators options.



	rdm

	type: lua table.

Optional.

Further options to select which (if any) reduced density matrices and corresponding
operators are to be evaluated.  See rdm options.



	restart

	type: lua table.

Optional.

Further options to control restarting the calculation from a previous calculation.
See restart options.



	reference

	type: lua table.

Optional.

Further options to select the reference state used.  See reference options.



	qmc_state

	type: qmc_state object.

Optional.

Output of a previous calculation to resume.


Warning

The qmc_state object must have been returned by a previous DMQMC calculation.
The validity of this is not checked.  The system must also be unchanged.




Warning

This destroys the qmc_state object and so it cannot be re-used in subsequent
QMC calculations.









dmqmc options


	replica_tricks

	type: boolean.

Optional.  Default: false.

Perform replica simulations (i.e. evolve two independent DMQMC simulations
concurrently) if true. This allows calculation of unbiased estimators that are
quadratic in the density matrix.



	fermi_temperature

	type: boolean.

Optional.  Default: false.

Rescale tau so that the simulation runs in timesteps of \(\Delta\tau / T_F\) where \(T_F\)
is the Fermi temperature. This is so results are at dimensionless inverse temperatures of \(\Theta^{-1}
=T_F/T\). This option is only valid for systems with a well defined Fermi energy.



	all_sym_sectors

	type: boolean.

Optional.  Default: false.

Sample states with all symmetries of the system instead of just those which conserve
the symmetry of the reference state.



	all_spin_sectors

	type: boolean.

Optional.  Default: false.

Sample states with all spin polarisations of the system instead of just those which
conserve the spin polarisation of the reference state.



	beta_loops

	type: integer.

Optional.  Default: 100.

The number of loops over the desired temperature range (each starting from
\(T=\infty\) and performing the desired number of iterations) to perform.  Each
beta loop samples the initial conditions independently.


Note

Estimators must be averaged at each temperature from different beta loops.  As
each beta loop is independent, this can be done in separate calculations in an
embararassingly parallel fashion.





	sampling_weights

	type: vector of floats.

Optional.  Default: none.

Specify factors used to alter the spawning probabilities in the DMQMC importance
sampling procedure. See PRB, 89, 245124 (2014) for an explanation, in particular
section IV and appendix B.

The length of the vector of floats should be equal to the maximum number of
excitations from any determinant in the space. For a chemical system with \(N\)
electrons and more than \(2N\) spin orbitals, this would be equal to
\(N\). For a Heisenberg model with \(N\) spins in the \(M_s=0\) spin
sector, this should be equal to \(N/2\) (each pair of opposite spins flipped is
one excitation).



	vary_weights

	type: integer.

Optional.  Default: 0

The number of iterations over which to introduce the weights in the importance
sampling scheme (see PRB, 89, 245124 (2014)). If not set then the full weights
will be used from the first iteration. Otherwise, the weights will be increased
by a factor of \((W_{\gamma})^{\beta/\beta_{target}}\) each iteration, where
\(W_{\gamma}\) is the final weight of excitation level \(\gamma\) and
\(\beta_{target}\) is the beta value to vary the weights until (equal to
the value specified by this option, multiplied by the time step size).



	find_weights

	type: boolean.

Optional.  Default: false.

Run a simulation to attempt to find appropriate weights for use in the DMQMC
importance sampling procedure. This algorithm will attempt to find weights such
that the population of psips is evenly distributed among the various excitation
levels when the ground state is reached (at large beta values). The algorithm
should be run for several beta loops until the weights settle down to a roughly
constant value.

The weights are output at the end of each beta loop.

This option should be used together with the find_weights_start option,
which is used to specify at which iteration the ground state is reached
and therefore when averaging of the excitation distribution begins.

This option cannot be used together with the excit_dist option. The
find_weights option averages the excitation distribution in the ground
state, whereas the excit_dist option accumulates and prints out the
excitation distribution at every report loop.


Warning

This feature is found to be unsuccessful for some larger lattices (for example,
6x6x6, for the Heisenberg model). The weights output should be checked. Increasing
the number of psips used may improve the weights calculated.





	find_weights_start

	type: integer.

Optional.  Default: 0.

The iteration number at which averaging of the excitation distribution begins,
when using the find_weights option.



	symmetrize

	type: boolean.

Optional.  Default: false.

Explicitly symmetrize the density matrix, thus only sampling one triangle of the
matrix.  This can yield significant improvements in stochastic error in some cases.



	initiator_level

	type: integer.

Optional.  Default: -1.

Set all density matrix elements at excitation level initiator_level and
below to be initiator determinants. An initiator_level of -1 indicates
that no preferential treatment is given to density matrix elements and the
usual initiator approximation is imposed, 0 indicates that the diagonal
elements are initiators, etc.

This is experimental and the user should identity when convergence has been
reached.







ipdmqmc options


	target_beta

	type: float.

Optional.  Default: 1.0.

The inverse temperature to propagate the density matrix to.
If fermi_temperature is set to True then target_beta is interpreted as the inverse reduced temperature
\(\tilde{\beta} = 1/\Theta = T_F/T\), where \(T_F\) is the Fermi temperature. Otherwise target_beta is taken
to be in atomic units.



	initial_matrix

	type: string.

Optional.  Default: ‘hartree_fock’.

Possible values: ‘free_electron’, ‘hartree_fock’.

Initialisation of the density matrix at \(\tau=0\).  ‘free_electron’ samples the
free electron density matrix, i.e. \(\hat{\rho} = \sum_i e^{-\beta \sum_j \varepsilon_j
\hat{n}_j} |D_i\rangle\langle D_i|\), where \(\varepsilon_j\) is the single-particle eigenvalue
and \(\hat{n}_j\) the corresponding number operator.  ‘hartree_fock’ samples
a ‘Hartree–Fock’ density matrix defined by \(\hat{\rho} = \sum e^{-\beta H_{ii}} |D_i\rangle\langle D_i|\),
where \(H_{ii} = \langle D_i|\hat{H}|D_i\rangle\).

It is normally best to use the hartree-fock option as this removes cloning/death on the diagonal if the shift
is fixed at zero. This requires slightly more work when also using the grand_canonical_initialisation, but this
is negligeable.



	grand_canonical_initialisation

	type: boolean.

Optional.  Default: false.

Use the grand canonical partition function to initialise the psip distribution.
The default behaviour will randomly distribute particles among the determinants
requiring a non-zero value of metropolis_attempts to be set for the correct
distribution to be reached.



	metropolis_attempts

	type: integer.

Optional.  Default: 0.

Number of Metropolis moves to perform (per particle) on the initial distribution.
It is up to the user to determine if the desired distribution has been reached,
i.e. by checking if results are independent of metropolis_attempts.



	symmetric

	type: boolean.

Optional. Default: false.

Use symmetric version of ip-dmqmc where now \(\hat{f}(\tau) =
e^{-\frac{1}{2}(\beta-\tau)\hat{H}^0}e^{-\tau\hat{H}}e^{-\frac{1}{2}(\beta-\tau)\hat{H}^0}\).


Warning

This feature is experimental and only tested for the 3D uniform electron
gas.









operators options


	renyi2

	type: boolean.

Optional.  Default: false.

Calculate the Renyi-2 entropy of the entire system.  Requires replica_tricks to be
enabled.



	energy

	type: boolean.

Optional.  Default: false.

Calculate the thermal expectation value of the Hamiltonian operator.



	energy2

	type: boolean.

Optional.  Default: false.

Calculate the thermal expectation value of the Hamiltonian operator squared.
Only available for the Heisenberg model.



	staggered_magnetisation

	type: boolean.

Optional.  Default: false.

Calculate the thermal expectation value of the staggered magnetisation operator.
Only available for the Heisenberg model and with bipartite lattices.



	excit_dist

	type: boolean.

Optional.  Default: false.

Calculate the fraction of psips at each excitation level, where the excitation level
is the number of excitations separating the two states labelling a given density matrix
element. This fraction is then output to the data table at each report loop, and so the
temperature-dependent excitation distribution is printed out.

This option should not be used with the find_weights option, which averages the
excitation distribution within the ground state.



	correlation

	type: 2D vector of integers.

Optional.  Default: false.

Calculate the spin-spin correlation function between the two specified lattice sites,
\(i\) and \(j\), which is defined as the thermal expectation value of:


\[\hat{C}_{ij} = \hat{S}_{xi}\hat{S}_{xj} + \hat{S}_{yi}\hat{S}_{yj} + \hat{S}_{zi}\hat{S}_{zj}.\]

Only available for the Heisenberg model.



	potential_energy

	type: boolean

Optional. Default: false

Evaluate the bare Coulomb energy. Only available for the UEG.



	kinetic_energy

	type: boolean

Optional. Default: false

Evaluate the kinetic energy. Only available for the UEG.



	H0_energy

	type: boolean

Optional. Default: false

Evaluate the thermal expectation value of the zeroth order Hamiltonian
where \(\hat{H} = \hat{H}^0 + \hat{V}\). See initial_matrix
option. Only available when using the ip-dmqmc algorithm.



	HI_energy

	Evaluate the expectation value of the interaction picture Hamiltonian where


\[\hat{H}_I\left(\frac{1}{2}(\beta-\tau)\right) =
    e^{\frac{1}{2}(\beta-\tau)\hat{H}^0}\hat{H}e^{-\frac{1}{2}(\beta-\tau)\hat{H}^0}.\]



	mom_dist

	type: float

Optional. Default: 0.0

Evaluate the (spin averaged) momentum distribution in kspace, i.e., \(\langle
\hat{n}_{\mathbf{k}} \rangle\), up to a maximum wavevector defined by kmax which is a
multiple of the Fermi wavevector. The momentum distribution will be printed out at
unique kpoints which have the same kinetic energy.  Results can be extracted from the
analysed (i.e. by using the finite_temp_analysis script in the tools/dmqmc (see
tutorial for more information)) dmqmc output using the extract_momentum_correlation.py
script in the tools/dmqmc directory.

Only currently implemented for the UEG.



	structure_factor

	type: float

Optional. Default: 0.0

Evaluate the static structure factor:


\[S_{\sigma\sigma'}(q) = \frac{N_{\sigma}\delta_{\sigma\sigma'}}{N} +
\frac{1}{N} \sum_{kp} \left\langle c^{\dagger}_{k+q\sigma}c^{\dagger}_{p-q\sigma'}
                              c_{p\sigma'}c_{k\sigma}\right\rangle\]

up to a maximum wavevector defined by qmax which is a multiple of the Fermi
wavevector. The static structure factor will be printed out at unique kpoints which
have the same kinetic energy. Note that in the output file we actually print out
\(S(q)-1\), \(S_{\uparrow\uparrow}(q)+S_{\downarrow\downarrow}(q)-1\) and
\(S_{\uparrow\downarrow}(q)+S_{\downarrow\uparrow}(q)\), where \(S(q) =
\sum_{\sigma\sigma'}S_{\sigma\sigma'}\). Results can be extracted from the analysed
(i.e. by using the finite_temp_analysis script in the tools/dmqmc (see tutorial for
more information)) dmqmc output using the extract_momentum_correlation.py script in
the tools/dmqmc directory. The extraction script takes care of the factors of 1.

Currently only implemented for the UEG.







rdm options

Note that the use of RDMs is currently only available with the Heisenberg model.


	rdms

	type: table of 1D vectors.

Required.

Each vector corresponds to the subsystem of a reduced density matrix as a list of the
basis function indices in the subsystem.  For example:

rdms = { { 1, 2 } }





specifies one RDM containing basis functions with indices 1 and 2, and

rdms = { { 1, 2 }, { 3, 4} }





specifies two RDMs, with the first containing basis functions with indices 1 and 2,
and the second basis functions 3 and 4.

Either instantaneous or ground_state must be enabled to set the desired mode of
evaluating the RDM (but both options cannot be used together).



	instantaneous

	type: boolean.

Optional.  Default: false.

Calculate the RDMs at each temperature based upon the instantaneous psip distribution.

Cannot be used with the ground_state option (either ground_state or instantaneous RDMs
can be calculated, but not both concurrently).



	ground_state

	type: boolean.

Optional.  Default: false.

Accumulate the RDM once the ground state (as specified by ground_state_start)
is reached.  This has two limitations: only one RDM can be accumulated in
a calculation and the subsystem should be at most half the size of the system (which
is always sufficient for ground-state calculations).

Cannot be used with the instantaneous option (either ground_state or instantaneous RDMs
can be calculated, but not both concurrently).



	spawned_state_size

	type: integer.

Required if instantaneous is true.  Ignored otherwise.

Maximum number of states (i.e. reduced density matrix elements) to store in the
“spawned” list, which limits the number of unique RDM elements that each processor can
set.  Should be a sizeable fraction of state_size (see qmc options) and
depends on the size of the subsystem compared to the full space.


Note

This is a per processor quantity.  It is usually safe to assume that each
processor has approximately the same number of states.





	ground_state_start

	type: integer.

Optional.  Default: 0.

Monte Carlo cycle from which the RDM is to be accumulated in each beta loop.  Relevant
only if ground_state is set to true and, as such, should be set to an iteration
(which is a measure of temperature) such that the system has reached the ground state.



	concurrence

	type: boolean.

Optional.  Default: false.

Calculate the unnormalised concurrence and the trace of the reduced density matrix at
the end of each beta loop.  The normalised concurrence can be calculated from this using
the average_entropy.py script.

Valid for ground_state only; temperature-dependent concurrence is not currently
implemented.



	renyi2

	type: boolean.

Optional.  Default: false.

Calculate the Renyi-2 entropy of each subsystem. More accurately, the quantity output
to the data table is \(S^n_2 = \sum_{ij} (\rho^n_{ij})^2\), (which differs from the
Renyi-2 entropy by a minus sign and a logarithm) where \(\rho^n\) is the reduced
density matrix of the \(n\)-th subsystem. The temperature-dependent estimate of
the Renyi-2 entropy can then be obtained using the finite_temp_analysis.py script.

Valid for instantaneous only; ground-state Renyi-2 averaged over a single beta
loop is not currently implemented.  Requires replica_tricks to be enabled in order
to obtained unbiased estimates.



	von_neumann

	type: boolean.

Optional.  Default: false.

Calculate the unnormalised von Neumann entropy and the trace of the reduced density
matrix at the end of each beta loop.  The normalised von Neumann entropy can be
calculated from this using the average_entropy.py script.

Valid for ground_state only; temperature-dependent von Neumann entropy is not
currently implemented.



	write

	type: boolean.

Optional.  Default: false.

Print out the ground-state RDM to a file at the end of each beta loop.  The file
contains the trace of the RDM in the first line followed by elements of the upper
triangle of the RDM labelled by their index.

Valid for ground_state only.









          

      

      

    

  

    
      
          
            
  
Full Configuration Interaction Quantum Monte Carlo (simple)

Find the ground state of a system via FCIQMC [Booth09].

simple_fciqmc {
    sys = system,
    sparse = true/false,
    qmc = { ... },
    restart = { ... },
    reference = { ... },
    qmc_state = qmc_state,
}






	Returns:

	a qmc_state object.





simple_fciqmc performs a full configuration interaction quantum Monte Carlo (FCIQMC)
calculation on a system using an explicitly calculated and stored Hamiltonian matrix.


Warning

This is an extremely simple implementation of FCIQMC.  In particular it makes no
effort to be efficient (in time or memory), is not parallelised, and does not include
any advanced features.  It is, however, useful for educational purposes and
(occasionally) hacking experimental ideas quickly.  Do not use for production
calculations.




Options


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via a system
function.



	sparse

	type: boolean.

Optional.  Default: true.

Store the Hamiltonian matrix in a sparse matrix format.



	qmc

	type: lua table.

Required.

Further options that are common to all implemented QMC algorithms.  Note that
options relating to memory usage, excitation generation and real amplitudes are not
implemented for simple_fciqmc.  See qmc options.



	restart

	type: lua table.

Optional.

Further options to control restarting the calculation from a previous calculation.
See restart options.



	reference

	type: lua table.

Optional.

Further options to select the reference state used.  See reference options.



	qmc_state

	type: qmc_state object.

Optional.

Output of a previous calculation to resume.


Warning

The qmc_state object must have been returned by a previous simple FCIQMC calculation.
The validity of this is not checked.  The system must also be unchanged.




Warning

This destroys the qmc_state object and so it cannot be re-used in subsequent
QMC calculations.











          

      

      

    

  

    
      
          
            
  
Common options

The following settings are common to multiple QMC algorithms.  See the individual
calculation documentation for Full Configuration Interaction Quantum Monte Carlo, Coupled Cluster Monte Carlo and Density Matrix Quantum Monte Carlo for details on
how to perform the calculations as well as the documentation for each set of common
options.



	qmc options

	reference options

	restart options

	semi_stoch options

	logging options

	output options

	blocking options








          

      

      

    

  

    
      
          
            
  
qmc options

The following options in the qmc table are common to the FCIQMC, CCMC and DMQMC
algorithms and control the core settings in the algorithms.


	tau

	type: float.

Required.

The timestep to use.

A small timestep causes the particles sampling the wavefunction/matrix to evolve very
slowly.  Too large a timestep, on the other hand, leads to a rapid particle growth
which takes a long time to stabilise, even once the shift begins to vary, and coarse
population dynamics.



	init_pop

	type: float.

Required unless the calculations is initialised from a restart file or qmc_state.

Set the initial population on the reference determinant.  For DMQMC calculations this
option sets the number of psips which will be randomly distributed along the diagonal
at the start of each beta loop.



	mc_cycles

	type: integer.

Required.

Number of Monte Carlo cycles to perform per “report loop”.



	nreports

	type: integer.

Required.

Number of “report loops” to perform.  Each report loop consists of mc_cycles
cycles of the QMC algorithm followed by updating the shift (if appropriate)
and output of information on the current state of the particle populations, including
terms in the energy estimators.



	state_size

	type: integer.

Required unless qmc_state is given.

Maximum number of states (i.e. determinants, excitors or density matrix elements) to
store in the “main” list, which holds the number of particles on the state and related
information such as the diagonal Hamiltonian matrix element.  The number of elements
that can be stored usually should be of the same order as the target population.

If negative, then the absolute value is used as the maximum amount of memory in MB to
use for this information.

Ignored if qmc_state is given.


Note

This is a per processor quantity.  It is usually safe to assume that each
processor has approximately the same number of states.





	spawned_state_size

	type: integer.

Required unless qmc_state is given.

Maximum number of states (i.e. determinants, excitors or density matrix elements) to
store in the “spawned” list, i.e. the maximum number of states which can be spawned onto
at a given timestep.  The amount of memory required for this is usually a small
fraction of that required for state_size, unless real_amplitudes is in use,
in which case this should be a sizeable fraction (or potentially even greater than the
memory for state_size, if load balancing of states across processors is poor).
The amount of memory required is also dependent on the value of tau.

If negative, then the absolute value is used as the maximum amount of memory in MB to
use for this information.

Ignored if qmc_state is given.


Note

This is a per processor quantity.  It is recommended that a short trial
calculation is run and the spawning rate for the desired timestep examined in
order to estimate a reasonable value for spawned_state_size.





	rng_seed

	type: integer.

Optional.  Default: generate a seed from a hash of the time and calculation UUID.

The seed used to initialise the random number generator.



	target_population

	type: float.

Optional.  Default: none.

Set the target number of particles to be reached before the shift is allowed to vary.
This is only checked at the end of each report loop.  Once the target_population is reached, the shift is varied according to


\[S(t) = S(t-A\tau) - \frac{\xi}{A\tau} log\left( \frac{N_p(t)} {N_p(t-A\tau)} \right)\]

where \(S\) is the shift, \(t\) the current imaginary time, \(\tau\) the
timestep, \(A\) mc_cycles, \(\xi\) shift_damping, and \(N_p\) the
number of particles.



	reference_target

	type: float.

Optional.  Default: none.

Set a target reference population to be reached before the shift is allowed to vary.
Cannot be used in conjunction with target_population.



	real_amplitudes

	type: boolean.

Optional.  Default: false.

Allow amplitudes to take non-integer weights.  This will often significantly reduce
the stochastic noise in the Monte Carlo estimates.

Automatically enabled if semi-stochastic is used.


Note

Real amplitudes are handled using fixed precision and so numbers which can not be
exactly represented are stochastically rounded to values that can be stored.

The preprocessor option POP_SIZE=32 (default) uses 32-bit integers to store the
amplitudes and stores amplitudes to within a precision/resolution of
\(2^{-11}\) and to a maximum absolute population of \(2^{20}\).

Consider using the preprocessor option POP_SIZE=64 to allow a greater range of
amplitudes to be encoded (precision of \(2^{-31}\) and maximum absolute
population of \(2^{32}\) at the cost of doubling the memory required to store
the amplitudes.

By default uses integer weights, i.e. with the minimum resolution of 1.





	real_amplitude_force_32

	type: boolean.

Optional.  Default: false.

Force the precision of the real amplitudes to that used for POP_SIZE=32 irrespective
of the actual POP_SIZE compile-time parameter.


Note

The main use-case for this is reproducing results produced by binaries compiled
using POP_SIZE=32 with binaries compiled using POP_SIZE=64; it is not intended for
use in production calculations.





	spawn_cutoff

	type: float.

Optional.  Default: 0.01 if real_amplitudes is used, 0 otherwise.

The minimum absolute value for the amplitude of a spawning event. If a spawning event
with a smaller amplitude occurs then its amplitude will probabilistically be rounded
up to the cutoff or down to zero in an unbiased manner.  A spawning event with an
amplitude above the cutoff is stochastically rounded such that it can be stored in a
fixed precision value.  If real_amplitudes is not in use, the fixed precision
corresponds to unit values.

Only relevant when using real_amplitudes.



	excit_gen

	type: string

Optional. Default: system dependent.

Possible values are system dependent (alternative, deprecated names in bracket):








	System

	Implemented

	Default





	chung_landau

	renorm, no_renorm

	renorm



	heisenberg

	renorm, no_renorm

	renorm



	hubbard_k

	renorm, no_renorm

	renorm



	hubbard_real

	renorm, no_renorm

	renorm



	read_in

	renorm, no_renorm,
renorm_spin,
no_renorm_spin,
heat_bath,
heat_bath_uniform_singles
(heat_bath_uniform),
heat_bath_exact_singles
(heat_bath_single),
uniform_power_pitzer
(power_pitzer_orderM),
heat_bath_power_pitzer
(power_pitzer_orderM_ij),
heat_bath_power_pitzer_ref
(power_pitzer_orderN),
uniform_cauchy_schwarz
(cauchy_schwarz_orderM),
heat_bath_cauchy_schwarz
(cauchy_schwarz_orderM_ij)

	renorm



	ringium

	no_renorm

	no_renorm



	ueg

	no_renorm,
power_pitzer

	no_renorm






The type of excitation generator to use.  Note that not all types are implemented for
all systems, usually because a specific type is not suitable for (large) production
calculations or not feasible or useful.

The ‘renorm’ generator requires orbitals to be selected such that a valid
excitation is possible, e.g. for a double excitation \((i,j)\rightarrow(a,b)\),
the combination \(i,j,a\) is only selected if there exists at least one unoccupied
orbital for \(b\) which conserves any symmetry and spin quantum numbers.  This is
efficient in terms of generating allowed excitations but involves an expensive
renormalisation step.  The ‘no_renorm’ generator lifts this restriction at the cost of
generating (and subsequently rejecting) such excitations; the excitation generation is
consequently much faster.  In general, ‘renorm’ is a good choice for small basis sets
and ‘no_renorm’ is a good choice for large basis sets, especially with a small number
of electrons (such that forbidden excitations are rarely generated).
‘renorm_spin’ and ‘no_renorm_spin’ are very similar to ‘renorm’ and ‘no_renorm’
respectively but when selecting \(i\) and \(j\), they first decide with
probability pattempt_parallel whether \(i\) and \(j\) should have
parallel spins or not. The idea is by Alavi and co-workers, see [Booth09] and [Booth14]
for example for more details on these excitation generators.

Note that the implementations of the weighted excitation generators here are all
described in [Neufeld19].

The ‘heat_bath’ excitation generator is very similar to the “original” heat bath
excitation generator described by Holmes et al. [Holmes16]. \(i,j,a,b\) are chosen
with weighted, precalculated probabilities that aim to make \(|H_{ij}|/p_\mathrm{gen}\) as constant
as possible. The difference to Holmes et al. is that we never do a single and a double
excitation at the same time. When Holmes et al. decide to do both, we do a single
excitation with probability of 0.5 and a double with 0.5. The ‘heat_bath’ excitation
generator can have a bias if for a valid excitation \(i\) going to \(a\),
there might be no occupied \(j\) that lets us select \(ija\). See Holmes et al.
for details. We check for the bias in the beginning of a calculation and stop it if
necessary.
The Cauchy-Schwarz ([Smartunpub], described in [Blunt17])
and Power-Pitzer excitation generators use approximate upper bounds
for these weights. A version of Cauchy-Schwarz excitation generators is described in [Schwarz]
but the weights used here and the implementation differ.
Here, Cauchy-Scharz uses Coulomb integrals and Power-Pitzer uses
exchange integrals to approximate weights.
‘heat_bath_uniform_singles’ is very similar to ‘heat_bath’ but samples single excitations
uniformly (mentioned by Holmes et al.) and ‘heat_bath_exact_singles’ is also very similar
but samples single excitations with the correct weighting (following a
recommendation by Pablo Lopez Rios). ‘heat_bath_uniform_singles’ and ‘heat_bath_exact_singles’ do
not have this potential bias that ‘heat_bath’ can have.

Some of the Power-Pitzer excitation generators use elements of the heat-bath excitation
generators ([Holmes16]) and their approximations for selecting \(a\) and \(b\)
are inspired by the Cauchy-Schwarz excitation generators by Alavi and co-workers
[Smartunpub]. See more details on all these weighted excitations generator in Ref. [Neufeld19].

The ‘power_pitzer’ excitation generator generates double excitations using a Power-Pitzer
[Power74] upper bound for the value of the Hamiltonian matrix element,
\(|\langle ij|ab\rangle|^2 => \langle ia|ai\rangle\langle jb|bj\rangle\)
(\(|\langle ij|ab\rangle|^2 => \langle ia|ia\rangle\langle jb|jb\rangle\) for
Cauchy-Schwarz excitation generators).
This involves some precalcalated weights and alias tables, but should reduce both noise
and shoulder heights. The weights to select a certain excitation are calculated for
the reference in the beginning of the QMC calculation. Each time the excitation
generator is called, the weights are mapped from the reference to the actual
determinant we attempt a spawn from. Only available for the UEG and read_in systems.
The time spent in this excitation generator scales as \(\mathcal{O}(N)\), where
\(N\) is the number of electrons and the memory requirements are \(\mathcal{O}(N M)\),
where \(M\) is the number of basis functions.  Single excitations are done uniformly.

‘uniform_power_pitzer’ uses a more refined upper bound for the Hamiltonian matrix
elements, where the weights for selecting an excitation are calculated each time the
excitation is called for the actual determinant we are spawning from. This requires
\(\mathcal{O}(M)\) time cost for each particle being spawned from. The
memory requirements are of \(\mathcal{O}(M)\). ‘heat_bath_power_pitzer’
is similar to ‘uniform_power_pitzer’ but samples selects \(i\) and \(j\)
similarly to the heat bath excitation generators. The memory cost is
\(\mathcal{O}(M^2)\).
‘uniform_cauchy_schwarz’ is similar to ‘uniform_power_pitzer’ and ‘heat_bath_cauchy_schwarz’
is similar to ‘heat_bath_power_pitzer’, the distinction being the types of weights used
to select \(ab\).

The ‘heat_bath_power_pitzer_ref’ excitation generator [Neufeld19] uses precalculated weights and unlike
‘uniform_power_pitzer’, it also samples \(i\) and \(j\) with weighted probabilities.
It also samples single excitations in a weighted manner. Its memory cost is
\(\mathcal{O}(M^2)\).
This excitation generator can be useful in single-referenced systems when doing
CCMC especially where the basis set size gets too big for ‘heat_bath_power_pitzer’ and
‘heat_bath_uniform_singles’. The computational scaling is also more favourable than
with ‘heat_bath_power_pitzer’.

In the case of the UEG, the ‘power_pitzer’ excitation generator pre-calculates
Power-Pitzer like weights for the selecting of orbital \(a\). \(i\) and
\(j\) are selected like the ‘no_renorm’ UEG excitation generator.  If \(a\) is
occupied, the excitation is forbidden.


Note

Our current advice for selecting an excitation generator to use with read_in systems [Neufeld19]:
First consider the ‘heat_bath’ excitation generator. A bias test will be run at the beginning of
the calculation then. If the bias test fails, try ‘heat_bath_uniform_singles’.
If ‘heat_bath’ and/or ‘heat_bath_uniform_singles’ fail due to memory constraints,
try ‘heat_bath_power_pitzer_ref’. Note that only ‘heat_bath’ requires a bias test.




Note

The Cauchy-Schwarz excitation generators are not implemented for complex read_in systems.




Note

Currently only the no_renorm and renorm excitation generators are available in
DMQMC.





	power_pitzer_min_weight

	type: float.

Optional. Default: 0.01.

Only used in ‘power_pitzer_orderN’ excitation generator or in ‘read_in’ systems if
the ‘power_pitzer’ excitation generator is used.
This number (approximately) sets the minimum value of
weight(orbital to excite to)/(total weights times number of orbitals to excite to).
The aim of this is to reduce the number of spawns with larger \(|H_{ij}|/p_\mathrm{gen}\)
which can happen if orbital connections with small values of \(p_\mathrm{gen}\) are mapped to
orbital connections with large values of \(|H_{ij}|\).



	pattempt_single

	type: float.

Optional.  Default: use the fraction of symmetry-allowed excitations from the
reference determinant that correspond to single excitations.

The probability of generating a single excitation.



	pattempt_double

	type: float.

Optional.  Default: use the fraction of symmetry-allowed excitations from the
reference determinant that correspond to double excitations.

The probability of generating a double excitation.


Note

If pattempt_single and pattempt_double do not sum to 1, we renormalize them.





	pattempt_update

	type: boolean.

Optional. Default: False.

If true, then pattempt_single is varied during the run
to attempt to align the means of \(|H_{ij}|/p_\mathrm{gen}\) for single and double excitations.
Mentioned in [Holmes16].
Update of pattempt_single only happens if shift has not started varying yet.
Not applicable to “original” heat bath algorithm excitation generator (excit_gen=”heat_bath”).
When restarting a calculation, if pattempt_update is set to true and both pattempt_single
and pattempt_double
are specified by the user, previous update information is lost and the update (provided
shift has not started varying yet) starts from scratch (the information to update
pattempt_single from previous runs is lost).
If pattempt_single or pattempt_double are in danger of getting too small, they will
be set to 1/the number of allowed spawn attempts needed before they are updated again
which is 10000 currently. A warning will be printed “WARNING: min. pattempt_single/double!” if
that is the case. Do make sure that before accepting a final pattempt_single or
pattempt_double, this warning will have not been printed for a while.


Note

Currently not available in DMQMC.




Note

By the way we set the minimum values for pattempt_single and pattempt_double, the
minimum value for these is 0.0001. If that is too high, consider setting them manually by
specifying both (only one is not sufficient) in the input file.





	pattempt_zero_accum_data

	type: boolean

Optional. Default: False.

If true and restarting a calculation, accumulated data needed to update pattempt_single
and pattempt_double is reset (set to zero, overflow boolean is set to false).
Only to be used together with pattempt_update. Only to be used by experienced users.



	pattempt_parallel

	type: float.

Optional. Default: Estimate it using \(\frac{ \sum_{i_{\Vert}j_{\Vert}ab} |H_{ijab}| }{ \sum_{ijab} |H_{ijab}| }\), where \(i_{\Vert} j_{\Vert}\) indicates \(i, j\) are restricted to having parallel spins.

Probability that \(i, j\) have parallel spins.
Only to be used with excit_gen == ‘no_renorm_spin’ and ‘renorm_spin’.

Cannot be bigger than 1 and if negative, the default estimate is applied.
It is recalculated in the beginning of each (restarted) calculation.



	initial_shift

	type: float.

Optional.  Default: 0.0.

The initial value of the shift.



	shift_damping

	type: float.

Optional.  Default: 0.05.

The shift damping factor, \(\xi\). This can be optimised using the
auto_shift_damping keyword (see blocking options).
On restarting the final value in the previous calculation will replace
the usual default value if shift_damping is not specified.



	vary_shift_from

	
type: float or string.

Optional.  Default: initial_shift.

Specify a value to set the shift to when target_population is reached.  If the
string ‘proje’ is specified then the instantaneous projected energy is used.  By
instantly setting the shift to a value closer to the correlation energy, the total
population can be stabilised substantially faster.




There is no guarantee that the instantaneous projected energy is a good
estimate of the ground state (particularly in the real-space formulation of
the Hubbard model), but it is likely to be closer to it than the default
shift value of 0.



	initiator

	type: boolean.

Optional.  Default: false.

Enable the initiator approximation (FCIQMC: [Cleland10]; CCMC: [Spencer15]; DMQMC:
[Malone16]) in which spawned particles are only kept if they are created onto states
which already have a non-zero population, or were produced by states which are already
highly occupied (see initiator_threshold), or multiple spawning events onto
a previously unoccupied state occurred in the same timestep.


Note

The initiator approximation should be considered experimental for CCMC and DMQMC (see
initiator_level option for DMQMC).




Warning

The initiator approximation is non-variational (due to the non-variational
energy estimator used) and the error should be carefully converged by
performing repeated calculations with increasing target_population values.





	initiator_threshold

	type: float.

Optional.  Default: 3.0.

Set the (absolute) population above which a state is considered to be an initiator
state.  A value of 0 is equivalent to disabling the initiator approximation.



	quadrature_initiator

	type: logical.

Optional. Default: true.

The initiator approximation in a complex spaces could be applied in (at least) two different
ways.
If this parameter is true, the magnitude of the instantaneous complex coefficient at each site
is used to determine initiator properties for both real and imaginary parents.

If this parameter is false, the magnitude of the real and imaginary populations are compared
separately and initiator flags for real and imaginary set individually.


Note

The comparative efficacy of these two approaches is currently under investigation.





	quasi_newton

	type: boolean.

Optional. Default: False.

Turn on quasi-Newton steps.  Conventional FCIQMC and related methods take steps which are
the equivalent of a scaled steepest-descent approach, which results in very long equilibration
times, and requires smaller values of tau for stability.
The quasi-Newton approach (partially) scales the steps according to the inverse difference in Fock energy to
the reference determinant, reducing the contributions from very high-energy determinants.

For more details see V. A. Neufeld, A. J. W. Thom, JCTC (2020), 16, 3, 1503-1510.


Note

Not currently available for DMQMC.
Due to Fock value calculations, only supported for read_in systems and the 3D uniform electron gas.
For semistochastic FCIQMC, determinants in the deterministic space are given weighting 1.





	quasi_newton_threshold

	type: float.

Optional. Default: Energy difference between LUMO and HOMO.

Used when quasi_newton is true.
The quasi-Newton approach (partially) scales the steps according to the inverse difference in Fock energy to
the reference determinant (with Fock energy \(F_0\)) for each determinant.  Any determinant with energy
less than \(F_0 + \Delta_{\mathrm{QN}}\), where \(\Delta_{\mathrm{QN}}\) is the value
given to quasi_newton_threshold, will have weighting \(v_{\mathrm{QN}}^{-1}\),
where \(v_{\mathrm{QN}}\) is the value given by quasi_newton_value.
The shift containing term in the death step are scaled by quasi_newton_pop_control instead. This
makes sure that that term is scaled by a constant, independent of the determinant/excitor involved,
so that the energy does not diverge with fluctuations around the true energy.

For more details see V. A. Neufeld, A. J. W. Thom, JCTC (2020), 16, 3, 1503-1510.



	quasi_newton_value

	type: float.

Optional. Default: quasi_newton_threshold.

See quasi_newton_threshold.



	quasi_newton_pop_control

	type: float

Set to 1 for original/non quasi-Newton propagation and otherwise for quasi-Newton,
the default is 1/quasi_newton_threshold.

See quasi_newton_threshold.



	tau_search

	type: boolean.

Optional.  Default: false.  Not currently implemented in DMQMC.

Update the timestep, tau, automatically if by scaling it by 0.95 if a bloom event
is detected.  A bloom event is defined as one which spawns more than three particles
in a single spawning event in FCIQMC and one which spawns more than 5% of the total
current population in a single spawning event in CCMC.


Note

Experimental option.  Feedback on required flexibility or alternative approaches
is most welcome.





	use_mpi_barriers

	type: boolean.

Optional.  Default: false.

Perform MPI_Barrier calls before the main MPI communication calls (both
for communication of the spawned list, and any semi-stochastic
communication). These are timed, and the total time spent in these calls
is reported at the end of a simulation.  This is useful for assessing
issues in load balancing, as it will allow you to see when certain
processors take longer to perform their work than others. This is turned
off by default because such calls may have an initialisation time which
scales badly to many processors.



	vary_shift

	type: boolean.

Optional.

If present, overrides any value of vary_shift set by a previous calculation
contained either in a restart file or a qmc_state object.  If set to true, the shift
is set to initial_shift.


Note

The shift will still be varied when target_population, if set, is reached.










          

      

      

    

  

    
      
          
            
  
reference options

The reference table contains options used to control the Hilbert space used in the
calculation and trial function for the projected estimator.


	det

	type: vector of integers.

Optional.  Default: a simple (but potentially not optimal) guess which satisfies the spin
and, if provided, symmetry options using the Aufbau principle.  In most cases the
default (which for molecules typically corresponds to the Hartree–Fock determinant)
is sufficient.

Specify the determinant (as a list of indices corresponding to occupied
single-particle orbitals) to be used as the reference determinant, which is used in
the trial function for calculating the projected energy estimator.  Typically this
should be the determinant expected to have the greatest overlap with the
desired wavefunction.



	hilbert_space_det

	type: vector of integers.

Optional.  Default: set to det.

Specify the determinant (as a list of indices corresponding to occupied single-particle
orbitals) used to generate the Hilbert space.  Using different determinants to control
the Hilbert space and the trial function allows, for example, spin-flip calculations
to be performed.


Note

Only relevant if the Hilbert space is not equivalent to the FCI space, i.e.
ex_level is smaller than the number of electrons in the system.





	ex_level

	type: integer.

Optional.  Default: set to the number of electrons in the system (i.e. consider all
determinants in the FCI space).

Maximum excitation level to consider relative to the determinant given by
hilbert_space_det.








          

      

      

    

  

    
      
          
            
  
restart options

The restart table contains options relating to checkpointing within QMC calculations.

HANDE currently uses one restart file per MPI rank with a filename of the form
HANDE.RS.X.pY.H5, where X is the restart index and Y is the MPI rank.


	read

	type: boolean or integer.

Optional.  Default: false.

Start a QMC calculation from a previous calculation if true or an integer.  If
true, then the highest value of X is used for which a set of restart files
exists, otherwise specifies the value of X to use.


Note

The calculation should be the same as the one that produced the ouput file, but it
is possible to restart a calculation using an enlarged basis.  The orbitals of the
old (small) basis must correspond to the first orbitals of the new (larger) basis.





	write

	type: boolean or integer.

Optional.  Default: false.

Write out checkpointing files at the end of the calculation if true or an
integer.  If true, then the highest value of X is used for which a set of
restart files doesn’t exist, otherwise specifies the value of X to use.



	write_shift

	type: boolean or integer.

Optional.  Default: false.

Write out checkpointing files when the shift is allowed to vary (i.e. once
target_population is reached) if true or an integer.  If true, then the
highest value of X is used for which a set of restart files doesn’t exist,
otherwise specifies the value of X to use.



	write_frequency

	type: integer.

Optional.  Default: \(2^{31}-1\).

Write out checkpointing files every N report loops, where N is the
specified value.


Note

The index used for the restart files created with this option is the next
unused index.  Depending upon the frequency used, a large number of restart files
may be created.  As such, this option is typically only relevant for debugging or
explicitly examining the evolution of the stochastic representation of the
wavefunction.





	rng

	type: boolean

Optional. Default: true.

Restart the state of the DSFMT random number generator from the previous calculation,
allowing restarted calculations to follow the same Markov chain as if the entire
series of calculations had been performed as a single calculation.


Note


	Calculations using OpenMP threads will not follow the same Markov chain due to
the non-deterministic load balancing behaviour of the OpenMP implementation.


	Restart files from older restart files do not contain the necessary information
to recreate the RNG state. This option is ignored automatically in such cases.


	Due to each processor using its own RNG stream, this functionality can only be
used when restarting calculations on the same number of processors.
Restart files created by the redistribute function will not contain RNG
information as a result. This option is automatically ignored in such cases.


	The presence of the RNG information in a restart file can be detected by
running the command

$ h5dump -A -d rng/state <restart file>





where <restart file> is the appropriate filename, which will return some
metadata information on the rng/state dataset if the RNG state is present
and an error otherwise.














          

      

      

    

  

    
      
          
            
  
semi_stoch options

The semi-stochastic approach [Petruzielo12], [Blunt15] divides the Hilbert space into two regions: a small region in
which the action of the Hamiltonian is applied exactly, and the remainder of the Hilbert
space, in which the action is applied stochastically.  This can substantially reduce the
stochastic error in many cases.


	space

	type: string.

Required.

Possible values: ‘read’, ‘high’, ‘ci’.

The type of deterministic space to use.  Using ‘read’ uses a deterministic space
produced from a previous calculation and saved to file using the semi_stoch
write option (the write_determ_space can be used but is now deprecated).
Using ‘high’ sets the deterministic space to consist of the states with
the highest population when the semi-stochastic projection is enabled.
Using ‘ci’ sets the deterministic space to consist of a (small!) truncated
configuration interaction space relative to a reference determinant.



	size

	type: integer.

Required if space is ‘high’, otherwise ignored.

The number of states to include in the deterministic space.



	ci_space

	type: reference table.  See reference options for options.

Required if space is ‘ci’, otherwise ignored.  Must contain at least ex_level.
The reference determinant, if not supplied, is identical to that given in the
calculation’s reference option.

Defines the deterministic space to contain all determinants in a small (truncated)
configuration interaction space.



	start_iteration

	type: integer.

Optional.  Default: 1.

The number of iterations to perform, during which the action of the Hamiltonian is
applied entirely stochastically, before semi-stochastic projection is enabled.  This
allows for a period for the population to grow and the ground-state wavefunction to
emerge before the deterministic space is selected if space is set to ‘high’.


Note

If the calculation is restarted from a previous one, this value refers to the
iteration index of the entire set of calculations. If it is less than the
iteration from which the calculation is started, semi-stochastic projection is
enabled immediately.





	shift_start_iteration

	type: integer.

Optional.  Default: None.  Overrides start_iteration.

The number of iterations to perform after the shift is varied (i.e. after the
target_population is reached) before the semi-stochastic projection is enabled.


Note

If the calculation is restarted from a previous one and the shift is already
varying, then semi-stochastic projection is enabled immediately.





	separate_annihilation

	type: boolean.

Optional.  Default: true.

If true, the deterministic amplitudes are communicated separately at the cost of an
additional MPI call.  If false, the annihilation of particles created from
deterministic and stochastic projections are performed together, which removes the
need for an additional MPI call at the cost of communicating an additional
\(\mathcal{O}(N_p N_D)\) more amplitudes, where \(N_p\) is the number of
processors and \(N_D\) the size of the deterministic space.  If the deterministic
space is small and communication latency high, setting separate_annihilation to
false might improve performance.  For most systems and computer architectures, the
default value is faster.



	write

	type: boolean or integer.

Optional.  Default: false.

Write out the deterministic space to file of form SEMI.STOCH.X.H5, where X is
the file id.  If set to true, X will be the smallest non-negative id such that
SEMI.STOCH.X.H5 does not already exist, otherwise the value provided is used as
the file id.



	read

	type: integer.

Optional.  Default: largest value of X such that the file SEMI.STOCH.X.H5 exists.

Index of the file containing the deterministic space produced from a previous
calculation.








          

      

      

    

  

    
      
          
            
  
logging options

The logging table contains options relating to outputting additional logs from QMC calculations.

Use of this functionality requires compiling HANDE with debug flags (using the -g option with mkconfig).
This enables implementation of logging without having an appreciable impact upon timings of an optimised
build.

This functionality is recommended for developers only. It should allow easy identification of
the causes of any changes in Markov chain between two calculations.

Additional logging functionality can be added upon request. Current coverage is by no means complete.


Note

This functionality cannot be used with OpenMP parallelisation.




	calc

	type: integer

Optional. Default: 0.

Determines level of logging output related to high-level behaviour within a calculation.
Currently implemented levels are:


	0 returns no extra information.


	1 returns summary of events within a calculation (currently only for FCIQMC and CCMC).




Any information is produced in files CALC.Y.pX.log within the working directory, where Y is the
same for all files produced in the same calculation and is set to the lowest value not present,
and X is the process number.



	spawn

	type: integer

Optional. Default: 0.

Determines level of logging output related to spawning within a calculation. Current levels are:


	0 returns no extra information.


	
	1 returns information on each spawning event creating at least one particle within a

	calculation (currently only for FCIQMC and generic systems).







	
	2 returns information on each spawning event within a calculation, regardless of result

	(currently only for FCIQMC on generic systems and CCMC).









Any information is produced in files SPAWN.Y.pX.log within the working directory, where Y is the
same for all files produced in the same calculation and is set to the lowest value not present,
and X is the process number.



	death

	type: integer

Optional. Default: 0.

Determines level of logging output related to death within a calculation. Current levels are:


	0 returns no extra information.


	
	1 returns information on each death or cloning event resulting in a change in particle number

	within a calculation (currently only for FCIQMC and generic systems).







	
	2 returns information on each death or cloning event within a calculation, regardless of result

	(currently only for FCIQMC on generic systems and CCMC).









Any information is produced in files DEATH.Y.pX.log within the working directory, where Y is the
same for all files produced in the same calculation and is set to the lowest value not present,
and X is the process number.



	stoch_selection

	type: integer

Optional. Default: 0.

Determines level of logging output related to stochastic cluster selection within a ccmc calculation.
Current levels are:


	0 returns no extra information.


	
	1 returns information on each stochastic selection attempt within a calculation resulting in a

	valid cluster (only for CCMC).







	
	2 returns information on each stochastic selection attempt within a calculation, regardless of

	validity of resulting cluster (only for CCMC).









Any information is produced in files STOCH_SELECTION.Y.pX.log within the working directory, where Y is the
same for all files produced in the same calculation and is set to the lowest value not present,
and X is the process number.



	start

	type: integer

Optional. Default: 0.

Defines the iteration from which logging information should be produced.



	finish

	type: integer

Optional. Default: \(2^{31}-1\).

Defines the iteration after which logging information should cease to be produced.








          

      

      

    

  

    
      
          
            
  
output options

The output table contains options relating to directing calculation output. This is currently
only compatible with Full Configuration Interaction Quantum Monte Carlo, Coupled Cluster Monte Carlo and Monte Carlo estimate of size of the Hilbert space, though extension to other
calculations would be relatively simple.


	filename

	type: string.

Optional. Default: ‘stdout’.

Filename to write any calculation output to. If set to default value, all calculation information
is printed to stdout.



	reprint_sys

	type: boolean.

Optional. Deafult: true.

If true all information on system single particle basis and symmetry that would usually be
printed during initialisation is also reprinted at the head of any output file. This is useful
when identifying what system a calculation was performed on a while later.








          

      

      

    

  

    
      
          
            
  
blocking options

The blocking table contains options used to control the options for performing
blocking analysis on the fly.


	blocking_on_the_fly

	type: boolean.

Optional. Default: false

If true, the data for blocking analysis is collected every report loop and blocking
analysis is performed on the fly while the calculation is running. At the end of the calculation,
Estimated correlation energy and its error together with reference energy is printed to the HANDE
output file. Zero is printed if insufficient data are collected for the blocking analysis.



	start_save_frequency

	type: integer.

Optional. Default: -1

Log2 of the frequency at which the potential start points of the blocking analysis is
saved. When negative, the frequency is the nearest integer to the log2(nreports) - 8.



	start_point_number

	type: integer.

Optional. Default: -1

Number of potential start points of the blocking analysis that is to be saved. If
negative, the integer part of nreports/2^(start_save_frequency).



	filename

	type: string.

Optional. Default: ‘BLOCKING’

Filename to which the blocking analysis report is written.



	start_point

	type: integer.

Optional. Default: -1

The iteration number from which the data for blocking analysis is collected. When
negative the data is collected when target_population is reached.



	error_limit

	type: real.

Optinal. Default: 0

One of two conditions for termination of the calculation together with blocks_used.
This specifies the upper limit of the sum of standard error and the error in error of projected energy.



	min_blocks_used

	type: integer.

Optional. Default: 10

The minimum number of optimal reblock lengths required for a calculation to
terminate. The calculation will not terminate due to the standard error
falling below error_limit until at least this number of optimal
reblock lengths are included within the calculation. This ensures that
our error estimate is reliable at termination.
Larger min_blocks_used ensures a more reliable blocking analysis but
increases the minimum length of calculations.



	blocks_used

	type: integer.

Optional. Default: 2**31-1

Independent of the error_limit, if the number of blocks used to estimate the standard error of projected energy
is more than the blocks_used, the calculation is terminated. Larger blocks_used ensures a more reliable
blocking analysis.



	auto_shift_damping

	type: boolean.

Optional. Default: false

Whether to automatically optimise the shift damping using information from blocking on the fly. This optimises
the shift damping to ensure that the standard deviations of the instantaneous projected energy and shift are
approximately equal. The allowable range of values is currently set to allow the shift standard deviation to
be between 50% and 200% of that of the instantaneous projected energy, though this could easily be exposed to
the user if required.


Note

This approach will modify the shift damping to ensure a reasonable variation in the shift during a calculation.
Updates to the shift damping will be printed within the output file, and the final shift damping written into
restart files to be used in any restarted calculations. If no shift_damping is provided to a restarted
calculation in the qmc table the final value from the restarted calculation will be used. If we read in from a
legacy restart file and no shift_damping is provided in the qmc table, the shift_damping defaults to the
original default, 0.05.




Note

Once an optimisation has been completed the calculation will not modify the shift damping unless
force_shift_damping_opt is true. This is to avoid the user having to know if an optimisation has been completed
when configuring a calculation restart.





	shift_damping_precision

	type: real.

Optional. Default: 2.0_p

How precisely the standard deviations of the projected energy and shift should match. This defines the
maxiumum allowed ratio between the two in any combination. For values above this a further optimisation
will be attempted. A lower value will lead to a longer optimisation period before statistics can be
collected but a more reliably optimised value. The minimum allowed ratio is 1.5_p, as convergence to below
this accuracy is not guaranteed.



	force_shift_damping_opt

	type: boolean.

Optional. Default: false

Forces shift damping optimisation when we have previously performed an optimisation. Useful when restarting
from previous calculation with a higher target population.








          

      

      

    

  

    
      
          
            
  
Utilities


Redistribution of restart files

redistribute {
    -- options
}





For speed in reading in restart files and for simplicity, HANDE produces restart files
specific to the number of MPI ranks used in the calculation and hence by default
calculations can only be restarted on the same number of MPI ranks the original
calculation ran on.  The redistribute function reads in a set of restart files and
produces a new set to be used on a different number of processors.


Note


	It is convenient to place this before the QMC calculation call in the input file.
However, the process of redistributing particles is a somewhat serial task and hence
redistribute may not scale well to large numbers of processors.  Hence it may be
more computationally efficient to do the redistribution targeting a large (ie 100s
or 1000s) of processors using a much smaller number of processors in a separate run
of HANDE.


	Load balancing settings are reset to their default values.






HANDE uses one restart file per MPI rank with a filename of the form HANDE.RS.X.pY.H5,
where X is the restart index and Y is the MPI rank.

Options:


	nprocs

	type: integer.

Optional.  Default: number of processors the calculation is running on.

Set the number of processors that the new set of restart files are to be used on.



	read

	type: integer.

Optional.  Default: highest non-negative integer for which a set of restart files
exists.

Set the index, X of the set of restart files to be read in.



	write

	type: integer.

Optional.  Default: highest non-negative integer for which a set of restart files does
not yet exist.

Set the index, X of the set of restart files to be written out.



	move_frequency

	type: integer.

Optional. Default: use the value from the original calculation.

Relevant only for CCMC calculations. See corresponding option in ccmc options for
details.



	sys

	type: system object.

Optional.

Only used to determine the number of basis functions, if changing the value of DET_SIZE
for the restart files.






Warning

Each processor must be able to access the entire set of existing restart files, which
are assumed to be in the working directory.





MPI information

mpi_root()






	Returns:

	true if the processor is the MPI root processor and false otherwise.





The input file is processed and run by each processor.  It is occasionally useful to
perform (for example) additional I/O from lua but only on one processor.  Testing if
the processor is the MPI root processor is a safe way to do this, e.g.

if mpi_root() then
    print('root says hello from lua!')
end







Memory management

Objects returned from functions (e.g. system and qmc_state objects) are deallocated by
Lua’s garbage collector when they are no longer required.  This can either be because the
variable goes out of scope or is set to nil.  This level of memory management is
sufficient in most calculations.  However, there may be a substantial memory overhead when
running multiple separate calculations in the same input file as the garbage collection
need not take place immediately.  As such, objects which are no longer required can be
explicitly freed using free methods on all objects returned by HANDE’s functions.
For example, for qmc_state objects:

system = hubbard_k {
    lattice = { { 10 } },
    electrons = 6,
    ms = 0,
    sym = 1,
    U = 1,
}

qs1 = fciqmc {
    sys = system,
    qmc = {
        tau = 0.01,
        init_pop = 10,
        mc_cycles = 20,
        nreports = 100,
        target_population = 50000,
        state_size = 5000,
        spawned_state_size = 500,
    },
}

-- Deallocate all memory associated with qs1 produced by the first FCIQMC calculation.
qs1:free()

qs2 = fciqmc {
    sys = system,
    qmc = {
        tau = 0.02,
        init_pop = 10,
        mc_cycles = 10,
        nreports = 100,
        target_population = 50000,
        state_size = 5000,
        spawned_state_size = 500,
    },
}





and similarly for system objects.



Write HDF5 system file

hdf5_name = write_read_in_system {
    sys = system,
    filename = filename,
}





Options:


	sys

	type: system object.

Required.

The system on which to perform the calculation.  Must be created via the read_in
function.



	filename

	type: string. Optional.

Filename to dump system hdf5 file to. If unset will generate a filename to dump to
based on the template: int_file + CAS_information + .H5, where int_file and the
CAS information are set in the call to read_in which create the system object.





Returns:


type: string.

name of HDF5 file created.  This is currently only available on the root processor and
can be passed into subsequent calls to read_in safely as only the root processor
reads from integral and system files.




When running a calculation using a system generated from a FCIDUMP, the system object
created by read_in can be dumped in HDF5 format for reuse in subsequent calculations;
this speeds initialisation by a factor of ~100x and reduces the required file size by ~16x
for large FCIDUMPs.  When running in parallel on a large number of cores this is
particularly important to utilise as it overcomes an inherent serialisation point in the
calculation initialisation.

For example:

sys = read_in {
    int_file = "FCIDUMP",
    nel = 24,
    ms = 0,
    sym = 0,
}

hdf5_name = write_read_in_system {
    sys = sys,
}





produces an HDF5 file entitled “FCIDUMP.H5” and return this value to the variable
hdf5_name.  Passing this as the argument to int_file within read_in will use
it in future calculations – the HDF5 format of the file is automatically detected.

If a CAS is used to produce the system object used to produce such a file it will be
labelled as such and only information for basis functions within the CAS will be stored;
conversion between different CAS within this functionality is not currently supported.

The FCIDUMP.H5 file does not specify the symmetry sector on which to perform a
calculation. This is instead set as in Generic systems.


Important

When using a HDF5 file to initialise a system either both of nel and ms must be
specified or neither; if neither are specified the values stored within the system
HDF5 file will be used and otherwise the given values override those stored.







          

      

      

    

  

    
      
          
            
  
A short introduction to lua

Lua is a lightweight programming language which is easy to embed and is well-suited to the
task of controlling a simulation.  For a quick introduction to lua, please read
Learn Lua in 15 Minutes [http://tylerneylon.com/a/learn-lua/].  However, for most cases
the input file format can be treated as follows:

Assignment is performed by setting a variable name equal to an object, e.g.

pi = 3.141592654





Strings are created by enclosing characters in quotation marks:

msg = 'hello world'





and boolean variables can be set using the true and false keywords:

yes = true
yes = false





A key data structure in lua is the table, which serves both as an array and an
associative array or map, and is denoted using braces.  First, the following creates a table
to hold a 1D vector:

v = { 1, 2, 3 }





whilst using key=value pairs creates a table as an associative array:

v = { x = 3, y = 4, type = 'dual' }





Tables can be nested.

Functions are called using:

x = fname(arg1, arg2, ...)





where fname is the name of the function, which returns a single value (which is
stored in x in the above example).  Keywords can be passed in by using a table.  If the
function takes a single table, then the parentheses need not be included, such that the
following calls are identical:

x = fname1({ x = 3, y = 4, type = 'dual'})
x = fname1{ x = 3, y = 4, type = 'dual'}





All options are passed into HANDE by using a table as an associative array.  Each function
exposed by HANDE to the lua script takes a single (nested) table.

Lua handles multiple return values from functions in a convenient manner.  If
a function call returns values that are then not set to a variable, the additional values
are discarded.  If a function call returns fewer values than are the variables set to hold
the results of the function call, the additional variables are set to nil.  See (e.g.)
http://www.lua.org/pil/5.1.html for more details.


Warning

lua, and by extension the HANDE input file, is case sensitive.






          

      

      

    

  

    
      
          
            
  
Cookbook

Having lua control a HANDE simulation allows for some pretty clean ways to run complicated
simulations. Here we will list some examples.


Twist Averaging

To aid in the removal of single-particle finite size effects it is often helpful to
perform twist averaging. Here we want to average results over multiple twist vectors
\(\mathbf{k}_s\) where each component of \(\mathbf{k}_s\) can be chosen to lie
within the simulation cell Brillouin zone. Normally we would need to run multiple
independent simulations yielding many output files, which can be problematic for file
systems. Lua allows us to run the calculations from a single input file.

In the example below we show this for a twist averaged canonical total energy calculation,
which can be useful for correcting incomplete twist averaged QMC calculations which are
typically much more expensive.

-- Function to generate a random twist.
function get_twist()
    ks = {}
    -- 3D UEG.
    for i = 0, 2 do
        -- For the UEG, we only need to generate a twist vectors whose components lie in
        -- the range [-pi/L, pi/L). In HANDE we interpret the input ks as being in terms
        -- of 2pi/L, so we need to randomly pick components in the range [-0.5, 0.5).
        sign = math.pow(-1, math.random(0, 1))
        ks[i] = 0.5*sign*math.random()
    end
    return ks
end

-- The number of simulations to average over.
ntwists = 3000
math.randomseed( os.time() )

for i = 1, ntwists do
    ks = get_twist()
    sys = ueg {
        nel = 19,
        ms = 19,
        dim = 3,
        cutoff = 20,
        rs = 0.5,
        twist = ks,
        verbose = false,
    }
    mc_state = canonical_estimates {
        sys = sys,
        canonical_estimates = {
            beta = 16,
            nattempts = 10000,
            ncycles = 10,
            fermi_temperature = true,
        },
    }
    sys:free() -- Free up memory.
end





The output file can then be analysed to obtain the canonical total energy estimate for each
twist angle using

$ analyse_canonical.py --sim canonical_twist.out





where canonical_twist.out is the output filename.





          

      

      

    

  

    
      
          
            
  
Interacting with running calculations

It is possible to interact with running calculations.

After each report loop, HANDE checks for the existence of the file HANDE.COMM in the
current working directory for all processors. If HANDE.COMM exists, then the file is read
and any modified parameters are then used for the rest of the calculation.  HANDE.COMM is
deleted after it is read in to prevent it from being detected on subsequent report loops
and to enable multiple interactions with a running calculation.

HANDE.COMM is a lua script, in a similar fashion to the input file, but has a much more
restricted range of options.  Options which can be set or modified are:


	softexit

	type: boolean.

End the calculation immediately but still perform any post-processing (e.g. dumping
out a restart file).  This is useful for cleanly terminating a converged calculation
or cleanly stopping a calculation before the walltime is reached to allow it to be
restarted.

The send_softexit.py script in the tools subdirectory is useful for running
HANDE on a queueing system as it writes softexit = true to HANDE.COMM a certain amount
of time before the walltime is reached.



	write_restart

	type: boolean or integer.

If true or set to an integer, restart files will be written out at the end of the
calculation, with the index given by the integer if supplied. See restart options
for more iformation. This overwrites the value (if any) given to write in the
restart table set in the input file.  Note that warnings relating to restart files
(e.g.  blocking on the fly information not stored) will not be printed.



	tau

	type: float.

Change the timestep to be used.



	target_population

	type: integer.

Change the number of particles to be reached before the calculation starts varying the
shift.  Meaningless if the calculation has already started varying the shift.  If smaller
than the current population (or negative) then the shift is immediately allowed to vary.



	shift

	type: float or 1D vector of floats.

Adjust the current value of the shift.  If the calculation has already entered
variable shift mode then the shift will still be updated every report cycle, otherwise
this is equivalent to changing the initial_shift value.

Passing a single value such as:

shift = -1





sets the shift in all spaces to the specified value.  Different spaces can be
modified separately by passing in a vector.  For example:

shift = { -1, -2 }





sets the shift in the first space to -1, in the second space to -2 and leaves it
unmodified in all other spaces.








          

      

      

    

  

    
      
          
            
  
Analysis

The following provides a brief overview for the most common analysis required for each
type of Monte Carlo calculation.  The guides in Tutorials provide a step-by-step
guide to analysing HANDE calculations and explain the reasoning behind the required
analysis parameters.

HANDE includes a variety of scripts and utilities in the tools subdirectory.  However,
these only provide a simple, command-line interface.  A comprehensive python module,
pyhande, drives all the analysis.  pyhande is extremely powerful for dealing
with complex analysis, data-driven investigation or bulk data analysis.


FCIQMC and CCMC


Fundamental Usage

QMC calculations print out data from a block of iterations (a ‘report loop’), the length
of which is controlled by the mc_cycles input option.  Care should be taken analysing
this data and, in particular, producing accurate estimates of the errors in the means of
the energy estimators.  Almost all data is averaged over the report loop (see output for
further details).

Note that no data is lost when quantities are summed over report loops, as the
correlation length in the data is substantially longer than the length of the
report loop (typically 10-20 iterations).

As the particle distribution at one iteration is not independent from the distribution at
the previous iteration, estimators at each iteration are not independent.  This
correlation in the data needs to be taken into account when estimating standard errors.
A simple and effective way of doing this is to use a blocking analysis
[Flyvbjerg89].

The reblock_hande.py script (in the tools subdirectory) does this.  Run

$ reblock_hande.py --help





to see the available options.  Estimates for the shift and projected energy are
typically obtained using

$ reblock_hande.py --start N out





respectively, where N is the starting iteration from which data should be blocked (i.e.
after the calculation has equilibrated) and out is the file to which the
calculation output was saved. Without –start option, this script automatically
estimates the appropriate N, so you usually don’t have to give N by yourself.

Note that reblock_hande.py can accept multiple output files for the case when
a calculation is restarted as follows:

$ reblock_hande.py -m out1 out2 out3





More complicated analysis can be performed in python by
using the pyhande library — reblock_hande.py simply provides a convenient
interface for the most common analysis tasks.



Hybrid method

Hybrid method is different choice to estimate
errors from blocking analysis, which is available as

$ reblock_hande.py -a hybrid out





Our experiment has shown that hybrid method
makes more reliable estimation of errors
than blocking analysis:
We prepared 1000 different CCMC-SD energy time-series
for Nitrogen atom, with the same calculation settung
but just different random seeds. Then, the energy means
and the standard errors were obtained by hybrid method
and blocking analysis, and it was examined how many
means coincide with the CCSD energy within the range
of the errors, respectively. The expected coincidence
rate for 1 sigma accuracy is 68.27%. Thus, when the
actual coincidence rate is closer to this percent,
the post-analysis is more reliable.

We employed two types of coincidence rate to compare
reliabilities, conditional coincidence rate (CCR)
and unconditional coincidence rate (UCR), which are
defined by


CCR = Hit / ( Total - Failed ) * 100,

UCR = Hit /       Total        * 100.



Here, ‘Total’ is the total number of post-analyses (=1000),
‘Failed’ is the number of post-analyses which fails to
make an estimation of the error(*),
and ‘Hit’ is the number of post-analyses which makes an estimation
of the error and the energy mean coincides with the CCSD energy
within the standard error.
(*: e.g. ‘Shift is not started yet’ in the case of blocking method)

In the following figures, the former (latter) compares the CCRs (UCRs)
obtained using hybrid method and blocking analysis for different
lengths of time-series.
Both figure shows that the CR of hybrid method is closer to 68.27%
for short lengths of time-series.

(Source code, png, hires.png, pdf)
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(Source code, png, hires.png, pdf)
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MSER minimization

There are two choices of method to estimate starting iterations,
one is originally implemented in reblock_hande.py (here call it
‘WREE minimization’) and the other is the newly implemented,
named ‘MSER minimization’. The new method is available as

$ reblock_hande.py -b mser_min out





These two methods are compared in a unpublished work,
where it is established that WREE minimization discards
extra much iterations, when length of time-series is large.
On the other hand, MSER minimization always gives constant
estimation of starting iterations, independent of length
of time-series.




Canonical Total Energy MC

The configurations and resulting estimates in a canonical total energy
calculation are statistically independent and therefore no blocking analysis is
required. The analyse_canonical.py script is available in tools/canonical_energy/ which
performs the appropriate averaging and standard error analysis on the output file
using the pyhande suite.



DMQMC

No blocking analysis is required for the error analysis of DMQMC calculations
as estimates are averaged over statistically independent runs. The
finite_temp_analysis.py script in tools/dmqmc can be used to perform a
standard error analysis of the Monte Carlo data for a number of different observables.





          

      

      

    

  

    
      
          
            
  
Generating integrals

HANDE can treat systems other than model Hamiltonians by reading in the necessary
integrals in the FCIDUMP format [Knowles89].  Many quantum chemistry packages can
generate them following Hartree-Fock calculations, including:


	HORTON

	https://theochem.github.io/horton/



	MOLPRO

	https://www.molpro.net/



	PSI4

	http://psicode.org.



	Q-Chem

	http://www.q-chem.com.  FCIDUMP code contributed by Alex Thom.





We most frequently use PSI4 and Q-Chem and so these tend to be better tested.  Note that
the computational cost of the calculations in HANDE vastly outweighs the cost of the
underlying SCF calculations and so the efficiency of the code used to generate the
integrals is usually not a key factor.  Please consult the documentation of the code of
interest regarding how to run SCF calculations and generate the integrals in the FCIDUMP
format.

Please note that not all programs use exactly identical FCIDUMP formats and some may not
be compatible with HANDE. The differences are typically in the namelist header. It may be
possible to resolve these differences by hand or a script.



FCIDUMP format

The format of FCIDUMP files used by HANDE is partially defined in [Knowles89]. It consists
of a namelist header, containing various pieces of information about the system, and a body containing
all integral values.


	&FCI

	Starts FCI namelist.



	/

	Terminates a namelist.  Most compilers also
implement the extension where &END is used to
terminate the namelist instead.



	x  i  a  j  b

	Format for integral values within body of the FCIDUMP.
x is a float or complex value as appropriate for the system.
i, j, a and b are integers.






&FCI namelist


	NORB

	Number of orbitals in the basis.  See note on basis indices below.
Must be provided in FCIDUMP namelist.



	NELEC

	Number of electrons in system.
Must be provided either in FCIDUMP namelist or input file.



	MS2

	Spin polarisation.
Must be provided either in FCIDUMP namelist or input file.



	ORBSYM

	Array containing symmetry label of each orbital.  See
symmetry notes below.
If not provided in FCIDUMP namelist we assume the system has no symmetry.



	UHF

	True if FCIDUMP file was produced from an unrestricted
Hartree-Fock calculation.  See note on basis indices below.
If not provided in FCIDUMP namelist RHF calculation is assumed.


Note

We assume that in UHF calculations the number of spin-up basis
functions is equal to the number of spin-down basis functions.





	ISYM

	Currently unused.  Defined solely for compatibility with NECI
FCIDUMP files.  Gives the symmetry of the wavefunction formed by
occupied the NELEC lowest energy spin-orbitals.



	SYML

	Currently unused.  Defined solely for compatibility with NECI
FCIDUMP files.  Array containing L (angular momentum) for each orbital.
Set to \(-1\) if L is not a good quantum number.



	SYMLZ

	Array containing \(L_z\) (angular momentum along the z-axis) for each orbital.
For example \(d_xz\) would have \(L=2\) and \(L_z=1\), and
\(d_yz L=2\), \(L_z=-1\).
If not provided in FCIDUMP assume no \(L_z\) symmetry in system.



	NPROP

	Dimensions of the supercell used in translationally symmetric systems.



	PROPBITLEN

	Length in bits of each kpoint index dimension in translationally symmetric systems.







Integrals

if \(i = j = a = b = 0\), \(E_{core} = x\) , where \(E_{core}\) contains the
nuclear-nuclear and other non-electron contributions to the
Hamiltonian.

if \(a = j = b = 0\), \(\epsilon_i = x\), the single-particle eigenvalue
of the i-th orbital.

if \(j = b = 0\), \(\langle i | h | a \rangle = x\), the one-body Hamiltonian matrix element
between the i-th and a-th orbitals, where \(h = T+V_{ext}\).

otherwise \(\langle i j | 1/r_{12} | a b \rangle = x\), the Coulomb integral between
the i-a co-density and the j-b codensity.  Note the Coulomb
integrals are given in Chemists’ notation.


Basis indices


	RHF

	All indices are in terms of spatial orbitals.  NORB is the
number of spatial orbitals.



	UHF

	All indices are in terms of spin orbitals.  NORB is the
number of spin orbitals.


Note

Basis functions (as stored by basis_fns) are always stored as spin
orbitals (the memory saving involved in storing only spatial orbitals
is not worth the additional overhead/headache, as FCIQMC involves
working in spin orbitals).  Integrals are expensive to store, so we
store them in as compressed format as possible.








Warning

The single-particle basis is assumed to be orthonormal.





Symmetry

Molecular orbitals are defined by the D2h point group (or a subgroup
thereof)by the quantum chemistry packages (QChem, MOLPRO) used to
produce FCIDUMP files , so we need only concern ourselves with Abelian
symmetries.

ORBSYM(i) = S+1, where S is the symmetry label defining the
irreducible representation spanned by the i-th orbital.
See notes in pg_symmetry about the symmetry label for Abelian point
groups.

If ORBSYM(i) = 0, then the symmetry of the i-th orbital is not
well-defined.  In this case, we can only resort to turning off all
symmetry (i.e. set all orbitals to be totally symmetric).


Warning

Note that this has memory implications for the integral storage.



For periodic systems symmetries are defined by their kpoint vector.
ORBSYM(i) contains this vector in a format defined by PROPBITLEN,
which is decoded within HANDE.






          

      

      

    

  

    
      
          
            
  
Tips

Some suggestions from the HANDE developers for using HANDE…heed our words!


Compilation

For optimised versions of HANDE, explore using:


	compiler-specific optimisation flags

In general adding ‘high-level’ optimisation flags (-O3, -Ofast, etc.) makes
a substantial impact on the calculation speed.



	interprocedural optimisation

Many compilers can perform interprocedural optimisation, whereby optimisations are
performed at link-time instead of compile-time.  This allows optimisations to be
performed (including inlining) on procedures specified in different source files.  On
some compilers (e.g. GCC, Intel) this can have a substantial benefit; on other compilers
the difference is less marked.



	popcnt instruction

If the processor being used includes it, uses the popcnt instruction rather than
a software implementation to count bits set in an integer.  This can have a impact of
the order of a few percent for the entire calculation.



	DET_SIZE=64

Use 64-bit integers rather than 32-bit integers to store the representation of the
determinant/excitor/tensor labels.  This can make certain calculations quicker (i.e.
those involving more than 32 single-particle basis functions) by reducing the amount of
bit operations that need to be performed.







Plotting calculation output using gnuplot

The first section of the output file contains information about the basis functions
used in the calculations. This gives spurious data points when the contents of the file
is plotted using gnuplot. They can be removed by creating an executable file called
gphande in the user’s $PATH, containing:

#!/bin/sed -nf
1,/iterations/d
/^ *[0-9]/p





When plotting in gnuplot, using the command

plot '<gphande file'





instead of

plot 'file'





will then remove the extra points.





          

      

      

    

  

    
      
          
            
  
Old (removed) functionality

Unused and not useful functionality is occasionally removed from HANDE, in
order to remove the maintenance burden for code that really has no benefit.  In
general, keeping failed experiments in the codebase is not helpful to
developers (more work) and users (not obvious if an option should or should not
be used).  When it transpires that something falls into the category, we may
hence remove it and detail it below.  If you are interested in resurrecting
this functionality, please dig through the git history and/or speak to
a developer.


	folded-spectrum FCIQMC

	The folded-spectrum approach allows, in principle, access to excited states
in FCIQMC via using the Hamiltonian \((H-\epsilon)^2\), where
\(\epsilon\) is an energy offset.  It emerged in practice to be very
painful/impossible to converge to excited states for systems beyond the
reach of conventional FCI.



	defining an initiator determinant via a complete active space

	Originally the initiator space was defined by a population threshold and
a complete active space (CAS).  It turns out that it is simpler to allow
the initiator space to emerge naturally just through the population
threshold (as used in later studies), whereas defining a CAS that is small
but effective is not easy in large systems.  Furthermore, using just
a population threshold makes the initiator approximation easier to extend
to other algorithms (i.e. CCMC and DMQMC).








          

      

      

    

  

    
      
          
            
  
Tutorials

The tutorials below demonstrate how to set up and run Monte Carlo calculations in HANDE.
The input files in the test suite also demonstrate how calculations can be performed.  The
aim here is to provide an introduction to setting up, running and analysing calculations
and only basic input options are considered; for advanced options please consult the
appropriate section of the manual.

The tutorials assume that HANDE has been successfully compiled and the test suite has been
sucessfully run.  Any reference to hande.x should be replaced with the full path to
the HANDE executable and similarly for the reblock_hande.py,
finite_temperature_analysis.py and analyse_canonical.py scripts.


Note

The exact command to launch HANDE with MPI depends upon the exact configuration of
MPI.  The command may be different (e.g. mpirun instead of mpiexec) and might
require the number of processors to be passed as an argument.  The tutorials show the
exact command we used, which varies depending upon the machine used to run the
tutorials.  We regularly use the OpenMPI implementation (mpiexec -np
<# processors> or mpirun -np <# processors>), Intel MPI (mpiexec) and
Cray-MPICH (aprun).



The input and output files from the calculations performed in the tutorials can be
found under the documentation/manual/tutorials/calcs/ directory.  The example
calculations are deliberately not trivial and may require up to a few hundred core hours
to run as shown.  Smaller calculations can be performed by reducing the system size (e.g.
using fewer electrons or orbitals) or running for fewer iterations.


Note

None of the tutorials fix a random number seed (as this is the best approach for
running multiple production calculations on the same system) so results will not be
exactly identical (but should agree statistically) from those in the above dataset
unless the same seeds (which can be found in the output files) are used.



We recommend working through the FCIQMC tutorial before the iFCIQMC, CCMC or DMQMC tutorials.



	Full Configuration Interaction Quantum Monte Carlo

	Initiator Approximation to FCIQMC

	Semi-Stochastic FCIQMC

	Coupled Cluster Monte Carlo

	Density Matrix Quantum Monte Carlo

	Interaction Picture Density Matrix Quantum Monte Carlo

	Canonical Estimates

	Shoulder Plots

	Solid state calculations





All calculations were analysed using pyhande and all graphs were plotted using
matplotlib [http://matplotlib.org/].  Parts of the plot generation code were
adapted from the matplotlib tutorials.




          

      

      

    

  

    
      
          
            
  
Full Configuration Interaction Quantum Monte Carlo

In this tutorial we will run FCIQMC on the 18-site 2D Hubbard model at half filling with
\(U/t=1.3\).  The input and output files can be found under the documentation/manual/tutorials/calcs/fciqmc
subdirectory of the source distribution.  Knowledge of the terminology and theory given in
[Booth09] and [Spencer12] is assumed.

First, we will set up the system and estimate the number of determinants in Hilbert space
with the desired symmetry using a Monte Carlo approach.

We are interested in the state with zero crystal momentum, as there is theoretical work
showing this will be the symmetry of the overall ground state.  HANDE uses an indexing
scheme for the symmetry label.  The easiest way to find this out is to run an input file
which only contains the system definition:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
}





This file can be run using:

$ hande.x hubbard_sym.lua > hubbard_sym.out





The output file, hubbard_sym.out, contains
a symmetry table which informs us that the wavevector \((0,0)\) corresponds to the
index 1; this value should be specified in subsequent calculations to ensure that the
calculation is performed in the desired symmetry subspace.

It is useful to know the size of the FCI Hilbert space, i.e. the number of Slater
determinants that can be formed from the single-particle basis given the number of
electrons and total spin.  Whilst the full space can be determined from simple
combinatorics, the size of the subspace containing only determinants of the desired
symmetry is less straightforward and it is the latter number that is of interest as it
only includes determinants that are connected via non-zero Hamiltonian matrix elements
and hence can be accessed in a Monte Carlo calculation.  A fast way to determine the size
of the accessible subspace is to use Monte Carlo sampling [Booth10] with an input file
containing:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

hilbert_space {
    sys = hubbard,
    hilbert = {
        nattempts = 100000,
        ncycles = 30,
    }
}





The Monte Carlo algorithm produces nattempts random determinants per cycle, from which
it estimates the size of the Hilbert space.  The independent cycles are used to provide an
estimate of the mean and standard error of the data; the running estimates of these are
printed every cycle and the final estimate at the end.

This calculation can be run in a similar fashion to before:

$ hande.x hubbard_hilbert.lua > hubbard_hilbert.out





Inspecting the output, we find that the
Hilbert space contains \(1.3 \times 10^8\) determinants with the desired symmetry.

FCIQMC requires a critical population to be exceeded in order to converge to the correct
answer.  This system-specific population is determined by the plateau.  A calculation
initially uses a constant energy offset (‘shift’) and a small starting population and
hence the population grows exponentially.  A plateau in the population growth
spontaneously appears, during which the correct sign structure of the ground state
wavefunction emerges.  The plateau is equally spontaneously exited and the population
grows at an exponential rate (albeit slower than the initial growth).

The simplest way to find the plateau is to run an FCIQMC calculation with a small initial
population and allow the population to grow until a large size; this can be accomplished
by setting target_population, which is the population at which the shift is allowed to
vary, to a large value (i.e. effectively infinite) such that the plateau should occur
before it.  This is done using an input file like 1:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 500,
        init_pop = 100,
        target_population = 10^10,
        state_size = -1000,
        spawned_state_size = -100,
    },
}





As the input file is a lua script, we can use lua expressions (e.g. 10^10 for
\(1 \times 10^{10}\)) at any point.

The choice of timestep is beyond the scope of a simple tutorial; broadly it is chosen
such that the population is stable and there are no ‘blooms’ (spawning events which create
a large number of particles).  HANDE will print out a warning and a summary at the end of
the calculation if blooms occur.  The other key values are how many iterations to run for
and the amount of memory to use for the main and spawned particle data objects.  These
were chosen such that enough states could be stored and the plateau occurs within the
iterations used.  Choosing these for a new system typically requires some trial and error.
Given the large population, we will run this calculation in parallel using MPI:

$ mpiexec hande.x hubbard_plateau.lua > hubbard_plateau.out





The parallel scaling of HANDE depends upon the system being studied and quality of the
hardware being used.  Typically using a minimum population per core of \(\sim 10^5\)
(assuming perfect load balancing, which can rarely be achieved) results in an acceptable
performance.

The output file is (hopefully!) fairly
intuitive.  The QMC output table contains one entry per ‘report loop’ (a set of Monte
Carlo cycles).  pyhande can be used to extract this information so that the
population growth can be easily plotted:

(Source code, png, hires.png, pdf)
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We hence see that the plateau occurs at around \(3.5 \times 10^6\) (\(\sim 2.8\%\)
of the entire Hilbert space) and hence FCIQMC is very successful for this system.


Note

In some cases the plateau may not be present (e.g. in sign-problem free systems) or
not easily visible (e.g. in systems with a small Hilbert space) or appear as
a shoulder (common in CCMC calculations).  pyhande contains two algorithms for
determining the plateau, which are helpful in such cases or for automatically
analysing large numbers of calculations.



We can now run a production calculation to find the ground state energy of this system.
To do so, we make two changes to the input used to find the plateau: target_population
is set to a value above the plateau (but not so large that the computational cost is
overwhelming) and the simulation is run for more iterations, i.e.:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 10000,
        init_pop = 100,
        target_population = 4*10^6,
        state_size = -1000,
        spawned_state_size = -100,
    },
}





and can again be run using:

$ mpiexec hande.x hubbard_fciqmc_real.lua > hubbard_fciqmc.out





This time, the population starts to be controlled after it reaches the desired
target_population:

(Source code, png, hires.png, pdf)
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Note that it takes some time for the population to stabilise as the shift gradually decays
towards the ground state correlation energy.  Once the population is stable, both the
shift and the instantaneous projected energy vary about a fixed value, namely the
ground state energy:

(Source code, png, hires.png, pdf)
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Care must be taken in evaluating the mean and standard error of these quantities, however.
The state of a simulation at one iteration depends heavily upon the state at the previous
iteration and hence each data point is not independent.  Further, in the case of the
projected energy estimator, the correlation between the numerator and denominator must be
taken into account.  The former issue is dealt with using a blocking analysis
[Flyvbjerg89]; the latter by taking the covariance into account.  Both of these are
implemented in pyhande and the reblock_hande.py script provides a convenient
command line interface to this functionality.  See Analysis for more information.
The above graphs show that the popualation, shift and instantaneous projected energy
estimator have all stabilised by iteration 30000, so we will accumulate statistics from
that point onwards.  reblock_hande.py can produce a lot of useful output but for now
we’ll only concern ourselves with the best guess of the standard error [Lee11], hence the
use of the --quiet flag:

$ reblock_hande.py --quiet --start 30000 hubbard_fciqmc.out





which gives

Recommended statistics from optimal block size:

                               # H psips \sum H_0j N_j        N_0       Shift Proj. Energy
fciqmc/hubbard_fciqmc.out  5222000(1000)      -7791(7)  23630(20)  -0.3299(3)  -0.32969(2)





The stochastic error can be reduced by running with more particles and/or running for
longer.  Another very effective method is to allow determinants to have fractional numbers
of particles on determinants rather than just using a strictly integer representation of
the wavefunction.  This is done using the real_amplitudes keyword:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 10000,
        init_pop = 100,
        target_population = 4*10^6,
        state_size = -1000,
        spawned_state_size = -100,
        real_amplitudes = true,
    },
}





The calculation can be run and analysed in the same manner:

$ mpiexec hande.x hubbard_fciqmc_real.lua > hubbard_fciqmc_real.out
$ reblock_hande.py --quiet --start 30000 hubbard_fciqmc_real.out





which results in:

Recommended statistics from optimal block size:

                                   # H psips \sum H_0j N_j       N_0        Shift  Proj. Energy
fciqmc/hubbard_fciqmc_real.out  5230600(100)     -15460(2)  46890(6)  -0.32976(3)  -0.329694(4)





Whilst using real amplitudes is substantially slower, the reduction in stochastic error
more than compensates; it is much more efficient than simply running for longer.  Real
ampltiudes also reduce the plateau height in some cases (as is the case here) though this
has not been investigated carefully in a wide variety of systems.

One reason that the calculation with real ampltiudes took so much longer than that with
integer ampltiudes is due to the nature of the Hubbard model: all non-zero off-diagonal
Hamiltonian matrix elements are identical in magnitude.  Carefully inspecting the output
in hubbard_fciqmc_real.out reveals that
there is almost one spawning event for every particle 2.  This results in a costly
communication overhead every timestep.  We can improve this by changing the
spawn_cutoff parameter, which is the minimum absolute value of a spawning event [Overy2014].
A spawning event with a smaller cutoff is probabilistically rounded to zero or the cutoff
value 3.  The default cutoff value, 0.01, need only be changed in cases such as this
and is set using the spawn_cutoff parameter in the qmc table:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 10000,
        init_pop = 100,
        target_population = 4*10^6,
        state_size = -1000,
        spawned_state_size = -100,
        real_amplitudes = true,
        spawn_cutoff = 0.1,
    },
}





Note that a value of 1 is comparable to using integer ampltiudes except for the death
step, which acts without stochastic rounding if real_amplitudes is enabled.

We can run calculations with different values of spawn_cutoff as before; here we
set use values of 0.1, 0.25 and 0.5.  reblock_hande.py can analyse multiple
calculations at once and so we can easily see the impact of changing spawn_cutoff
compared to the default value and the original FCIQMC calculation using integer
ampltiudes:

$ reblock_hande.py --quiet --start 30000 hubbard_fciqmc*out





Recommended statistics from optimal block size:

                                           # H psips \sum H_0j N_j        N_0        Shift  Proj. Energy
fciqmc/hubbard_fciqmc.out              5222000(1000)      -7791(7)  23630(20)   -0.3299(3)   -0.32969(2)
fciqmc/hubbard_fciqmc_real.out          5230600(100)     -15460(2)   46890(6)  -0.32976(3)  -0.329694(4)
fciqmc/hubbard_fciqmc_real_sc0.1.out    5225400(200)     -13172(1)   39952(4)  -0.32968(5)  -0.329704(6)
fciqmc/hubbard_fciqmc_real_sc0.25.out   5219300(400)     -10627(4)  32230(10)   -0.3298(1)  -0.329696(9)
fciqmc/hubbard_fciqmc_real_sc0.5.out    5220500(600)      -9595(4)  29100(10)   -0.3296(2)   -0.32970(1)





As expected, increasing the spawn_cutoff results in an increase in the stochastic
error (linear, in this case, due to the identical magnitude of non-zero off-diagonal
Hamiltonian matrix elements).  Finally, we can compare the change in stochastic error to
the wall time of the calculation:

(Source code, png, hires.png, pdf)
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For convenience, the integer amplitude calculation is shown as having a spawn_cutoff
of 1. Clearly there is a playoff between the computational cost and the desired stochastic
error; choosing a value of 0.25 for spawn_cutoff in this case seems sensible as it is
around the point where the rate of change in the wall time begins to slow 4.

Footnotes


	1

	With some scripting it is possible to automatically detect the plateau and interact
with the calculation at this point.



	2

	This can be confirmed analytically using knowledge of the internal excitation
generators and the associated probabilities, the value of \(U/t\) and the
calculation timestep.



	3

	One can hence view the integer amplitudes algorithm, ignoring death and spawning
events which produce multiple particles, as having a spawn_cutoff of 1.



	4

	A more comprehensive approach to assessing the efficiency of the calculations can
be found in [Vigor16].








          

      

      

    

  

    
      
          
            
  
Initiator Approximation to FCIQMC

We shall again calculate the ground state energy of the 18-site 2D Hubbard model at
half-filling and with \(U/t=1.3\), as in the FCIQMC tutorial.
The initiator approximation [Cleland10] greatly reduces the number of particles required
to sample the wavefunction.  The drawback, however, is that the approximation must be
carefully controlled to obtain an accurate estimate of the FCI energy by running multiple
calculations with increasing populations.

It is efficient (both computationally and in terms of elapsed time) to treat each
calculation separately.  For compactness, we shall simply run multiple calculations with
different target_population values one after the other in the same HANDE calculation.
This is trivial to do by using a lua loop as fciqmc is simply a function call:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

targets = {2.5*10^3, 5*10^3, 7.5*10^3, 10^4, 2.5*10^4, 5*10^4, 1*10^5, 2.5*10^5, 5*10^5, 1*10^6}
for i,target in ipairs(targets) do
    qmc_state = fciqmc {
        sys = hubbard,
        qmc = {
            tau = 0.002,
            mc_cycles = 20,
            nreports = 10000,
            init_pop = 100,
            target_population = target,
            state_size = -1000,
            spawned_state_size = -100,
            initiator = true,
        },
    }
    -- For memory efficiency, explicitly free qmc_state after each calculation.
    qmc_state:free()
end





The only difference between the above input and an FCIQMC calculation is the setting
initiator = true.  As in the examples in the FCIQMC tutorial,
this can be run using:

$ mpiexec hande.x hubbard_ifciqmc.lua >  hubbard_ifciqmc.out





Again, the exact command to launch MPI will vary with MPI implementation and local
configurations.

Inspecting the output, we see one iFCIQMC
calculation was run for each call to the fciqmc function.  pyhande
(and, by extension, reblock_hande.py) can handle such cases, so we easily extract and
inspect the data for each calculation.

Let’s start by inspecting instantaneous projected energy estimator for the three smallest
populations:

(Source code, png, hires.png, pdf)
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Whilst the difference is small on this scale, it is evident that the calculation with the
smallest population has a slightly higher mean than calculations with larger populations.
To confirm this, we will plot the energy as a function of population.  As
target_population is the population at which the population starts to be
controlled, we should consider the average population (which is somewhat higher).
We can also compare directly to the FCIQMC energy in this case, as the population required
for the FCIQMC calculation is sufficiently small:

(Source code, png, hires.png, pdf)
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The light blue region indicates the extent of the FCIQMC stochastic error, as
calculated in the FCIQMC tutorial.  In this case, the initiator
approximation reduces the population required by a factor of \(\sim 2\).  However,
many studies (including on the electron gas and molecular systems) have demonstrated the
initiator approximation can reduce the population required by many orders of magnitude.

The estimates for each calculation can be found directly by using reblock_hande.py:

$ reblock_hande.py --quiet --start 30000 hubbard_ifciqmc.out





where again we chose the start point from inspecting the population growth.  This gives:

Recommended statistics from optimal block size:

                                   # H psips \sum H_0j N_j         N_0        Shift  Proj. Energy
ifciqmc/hubbard_ifciqmc.out 0        3332(6)      -91.6(1)    283.6(4)    -0.325(2)    -0.3230(2)
                            1        6609(9)     -153.6(2)    469.4(8)    -0.328(2)    -0.3272(2)
                            2      13360(10)     -293.3(3)    890.9(7)    -0.329(1)    -0.3292(1)
                            3      32580(20)     -718.7(4)     2182(2)   -0.3293(6)    -0.3293(1)
                            4      65230(30)    -1403.2(6)     4261(2)   -0.3291(5)   -0.32932(7)
                            5     130170(30)    -2586.4(5)     7853(2)   -0.3289(3)   -0.32939(5)
                            6     326320(60)    -5520.8(8)    16753(3)   -0.3298(2)   -0.32955(3)
                            7     651010(80)      -9937(1)    30146(4)   -0.3296(1)   -0.32965(2)
                            8   1318400(100)     -19354(2)    58707(6)  -0.32969(9)   -0.32968(2)
                            9   3279800(200)     -48971(4)  148530(20)  -0.32962(7)  -0.329693(8)
                            10  6512700(200)     -97670(4)  296240(10)  -0.32971(5)  -0.329700(7)





reblock_hande.py can also handle the case where each calculation is run separately and
each separate file is passed in as a separate argument on the command line.


Note

We highly recommend a visual inspection of the plot of the initiator error as
a function of population as the convergence can be non-monotonic and, as a result,
at least two calculations at different populations with statistically equivalent
results are required in order to confirm the error due to the initiator approximation
is smaller than the stochastic error.



Finally, using real populations can, as with the FCIQMC tutorial, have
a significant impact on the stochastic error.  Again, this is done by setting
real_amplitudes = true in the input file (see
hubbard_ifciqmc_real.lua).  We also
choose to set spawn_cutoff to 0.25 following the investigation in FCIQMC
tutorial; this results in a small increase in the stochastic error but
results in the calculation taking roughly half the time.  Again, note this is somewhat
unique to the Hubbard model.  Running:

$ mpiexec hande.x hubbard_ifciqmc_real.lua >  hubbard_ifciqmc_real.out





followed by the blocking analysis on the output:

$ reblock_hande.py --quiet --start 30000 hubbard_ifciqmc_real.out





results in

Recommended statistics from optimal block size:

                                        # H psips \sum H_0j N_j         N_0        Shift  Proj. Energy
ifciqmc/hubbard_ifciqmc_real.out 0        3271(2)     -91.03(5)    280.7(2)   -0.3234(9)    -0.3243(1)
                                 1        6643(4)    -148.28(8)    451.5(3)   -0.3298(7)   -0.32844(7)
                                 2       13100(7)     -288.8(2)    877.4(7)   -0.3285(7)   -0.32917(7)
                                 3       32762(7)     -744.6(2)   2261.7(7)   -0.3290(3)   -0.32925(5)
                                 4      65570(20)    -1510.1(4)     4586(1)   -0.3300(3)   -0.32930(3)
                                 5     130830(20)    -2855.0(3)     8669(1)   -0.3295(1)   -0.32934(2)
                                 6     326640(30)    -5821.8(6)    17665(2)   -0.3296(1)   -0.32957(1)
                                 7     660180(40)   -10118.3(5)    30694(2)  -0.32981(7)   -0.32965(1)
                                 8    1303850(60)     -19413(1)    58882(4)  -0.32958(5)  -0.329689(8)
                                 9    3287160(90)     -51020(2)   154749(5)  -0.32969(3)  -0.329699(5)
                                 10  6548200(100)    -103229(2)  313100(10)  -0.32967(2)  -0.329698(3)





Again, there is a general trend (though not entirely smooth) for the energy estimators to
converge to the same energy as a function of total population.  It is interesting to take
a close look at the convergence of the projected energy estimator:

(Source code, png, hires.png, pdf)
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The cluster of results around populations of \(5\times10^5\) shows that it is vital to
reduce the stochastic error before deciding the remaining initiator error is negligible.
Further, it is interesting to note that the initiator approximation results in a much
more efficient sampling of the Hilbert space: for a similar population (\(\sim10^6\)),
the iFCIQMC calculations have a much smaller stochastic error for a similar
computational cost.




          

      

      

    

  

    
      
          
            
  
Semi-Stochastic FCIQMC

In this tutorial we will explain how to run FCIQMC calculations using the
semi-stochastic adaptation to reduce stochastic errors [Petruzielo12]. We
will consider the half-filled 18-site 2D Hubbard model at \(U/t=1.3\),
as previously considered in the basic Full Configuration Interaction Quantum Monte Carlo tutorial. In
particular, we shall begin from the input file presented at the end of the
FCIQMC tutorial, which introduces the use of non-integer psip amplitudes
through the real_amplitudes keyword:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 10000,
        init_pop = 100,
        target_population = 4*10^6,
        state_size = -1000,
        spawned_state_size = -100,
        real_amplitudes = true,
    },
}





and which results in the following simulation:

(Source code, png, hires.png, pdf)
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The semi-stochastic adaptation provides a way to reduce the stochastic noise
in such simulations. It does so by choosing a certain subspace (called the
deterministic subspace), which is deemed to be most important (in that most
of the wave function amplitude resides in this subspace), and performing
projection exactly within it. Projection outside the subspace is performed by
the usual FCIQMC stochastic spawning.

Thus, we simply need to specify what subspace to use for the exact projection.
One way of doing this is by using the scheme of [Blunt15], where the subspace is
formed from the determinants on which the largest number of psips reside. We
therefore simply need to tell HANDE what iteration to start using the
semi-stochastic adaptation, and how many determinants to form the deterministic
subspace from.

There are a couple of things to consider when choosing the size of the
deterministic space. Firstly, within the deterministic subspace, the Hamiltonian
is stored exactly in a sparse form. Therefore, using semi-stochastic does increase
memory requirements. The deterministic Hamiltonian storage (and multiplication) is
distributed across processing cores, which allows larger subspaces to be used.
The other consideration is that, for very large deterministic spaces, and for
certain systems (particularly strongly correlated systems), semi-stochastic can
slow simulations down slightly. Through investigation (for example, see [Blunt15]),
it has been found that a deterministic space of size \(10^4\) allows a very
large reduction in stochastic error for most simulations, while not increasing
simulation time. We therefore suggest this as a black box subspace size. This is
also small enough that the deterministic Hamiltonian can always be stored, even if
using only a typical desktop computer.

Note that because semi-stochastic does not usually reduce iteration time much
(and sometimes increases it), one should not worry that we do not use
semi-stochastic from the first iteration. We are only concerned with reduction
in stochastic error from the point where data will be averaged later.

Looking at the above simulation, it appears that the energy has converged by
iteration \(2 \times 10^4\). This is not a guarantee that the wave function is
also fully converged, but full convergence is not critical – so long as the most
important determinants are in the deterministic subspace, then a large reduction
in stochastic error will occur. As discussed above, a reasonable deterministic
space size is \(10^4\). So, to start using a deterministic space of size
\(10^4\) at iteration \(2 \times 10^4\), we modify the above input to
the following:

hubbard = hubbard_k {
    lattice = {
        { 3,  3 },
        { 3, -3 },
    },
    electrons = 18,
    ms = 0,
    U = 1.3,
    t = 1,
    sym = 1,
}

fciqmc {
    sys = hubbard,
    qmc = {
        tau = 0.002,
        mc_cycles = 20,
        nreports = 10000,
        init_pop = 100,
        target_population = 4*10^6,
        state_size = -1000,
        spawned_state_size = -100,
        real_amplitudes = true,
    },
    semi_stoch = {
        size = 10000,
        start_iteration = 20000,
        space = "high",
    },
}





Here, the semi-stoch table contains three keywords. The use of size and
start_iteration keywords is hopefully clear. The space keyword determines
which method is used to generate the deterministic space - in this case by choosing the
determiniants with the highest weights.

This results in the following simulation:

(Source code, png, hires.png, pdf)
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As can be seen, at iteration \(2 \times 10^4\) there is a large reduction in
stochastic error.

When performing a blocking analysis, the user should not begin averaging data until
after the semi-stochastic adaptation has been turned on, since there is a
significant change in the probability distributions of data beyond this point. This
is particularly true in initiator FCIQMC simulations, where the use of semi-stochastic
can alter the initiator error (although we typically find that semi-stochastic does not
alter the magnitude of initiator error significantly, it can in some cases, see
[Petruzielo12]). We can therefore analyse the above simulation using

$ reblock_hande.py --quiet --start 30000 hubbard_semi_stoch_high.out





which results in:

Recommended statistics from optimal block size:

                               # H psips \sum H_0j N_j       N_0        Shift   Proj. Energy
hubbard_semi_stoch_high.out  5216460(80)     -15356(2)  46576(5)  -0.32970(2)  -0.3296994(8)





Compared to the equivalent non-semi-stochastic simulation performed in the
FCIQMC tutorial tutorial, the error bars on the shift and projected
energy estimators have reduced from \(4 \times 10^{-5}\) and
\(3 \times 10^{-6}\) to \(2 \times 10^{-5}\) and \(8 \times 10^{-7}\),
respectively.

Note that if you do not specify a start_iteration value in the semi_stoch
table of the input file, then the semi-stochastic adaptation will be turned
on from the first iteration. This should not be done when starting a new
simulation, because wave functions in HANDE are initialised as single determinants.
However, if restarting a simulation from an HDF5 file then this is a sensible approach -
the simulation will begin from the wave function stored in the HDF5 file, and the
deterministic space will be chosen from the most populated determinants in this
wave function. An input file for such a restarted simulation would contain the
following semi_stoch and restart tables within the fciqmc table:

fciqmc {
    sys = hubbard_k{...},
    qmc = {...},
    semi_stoch = {
        size = 10000,
        space = "high",
    },
    restart = {
        read = 0,
    },
}





(see the restart options entry in the documentation for more options relating to
restarting simulations).

Finally, when restarting simulations which were already using the semi-stochastic
adaptation, it is important to use exactly the same deterministic space to ensure
that estimators are statistically consistent before and after restarting. However,
the approach in HANDE uses the instantaneous FCIQMC wave function to generate the
deterministic space, which changes during the simulation. Using the above approach
would therefore lead to a slightly different space being generated after restarting.
One can get around this by outputting the deterministic space in use to a file, and
reading it back in for the restarted calculation. For example, to generate a
deterministic space from the \(10^4\) most populated determinants at iteration
\(2 \times 10^4\), and to then print this space to a file, one should use the
write keyword in the semi-stoch table:

fciqmc {
    sys = hubbard_k{...},
    qmc = {...},
    semi_stoch = {
        size = 10000,
        start_iteration = 20000,
        space = "high",
        write = 0,
    },
}





Here, the value of the write keyword, \(0\), is an index used in the
name of the resulting file. Note that write can also be a boolean, in which
case HANDE will find and use the smallest unused id available in the directory.

When restarting the simulation, one can then specify the space option to
read a semi-stochastic HDF5 file, using:

fciqmc {
    sys = hubbard_k{...},
    qmc = {...},
    semi_stoch = {
        space = "read",
    },
}





The deterministic space file is an HDF5 file. As such, both writing and reading
of such files requires compilation of HANDE with HDF5 enabled, which is the
default compilation behaviour.




          

      

      

    

  

    
      
          
            
  
Coupled Cluster Monte Carlo

In this tutorial we will run CCMC on the carbon monoxide molecule in a cc-pVDZ
basis.  For details of the theory see [Thom10] and [Spencer15].

This tutorial only presents the basic options available in a CCMC calculation;
for the full range of options see the main documentation.

To perform calculations on a molecular system in HANDE, we need the one- and
two- electron integrals in some appropriate basis
from an external source.  For the calculations in this tutorial, the integrals
were calculated using Psi4; input and output files can be found with the files
from the calculations herein in the documentation/manual/tutorials/calcs/ccmc
subdirectory.

The system definition is exactly the same as for FCIQMC:

sys = read_in {
    int_file = "CO.CCPVDZ.FCIDUMP",
    nel = 14,
    ms = 0,
}





Note that we have not specified an overall symmetry.  In this case HANDE uses
the Aufbau principle to select a reference determinant.

A CCMC calculation can be run in a very similar way to FCIQMC.  As for FCIQMC we
can substantially reduce stochastic error by using real amplitudes, which we do
for all calculations presented here.  The most significant difference from an
FCIQMC input is that it is standard to use truncation with CCMC, specified by the
ex_level option, (i.e. 2 for CCSD, 3 for CCSDT, etc.).  The determination of
a plateau and hence a suitable value for target_population is
exactly analogous to FCIQMC, as the sign problem is
similar between the two methods; we will not discuss it
further here.  The CCSDTMC calculation can be run using an input file such as:

sys = read_in {
    int_file = "CO.CCPVDZ.FCIDUMP",
    nel = 14,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-3,
        mc_cycles = 10,
        nreports = 1e5,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 1e4,
        target_population = 1e6,
	real_amplitudes = true,
    },
    reference = {
        ex_level = 3,
    },
}





Note the much larger initial population compared to an FCIQMC calculation; if
this is too low the correct wavefunction will not be obtained.

Looking at the output, we see the evolution of
the population has a similar form to FCIQMC:

(Source code, png, hires.png, pdf)
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and the shift and projected energy vary about the correlation energy:

(Source code, png, hires.png, pdf)
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The output of the calculation can be analysed in exactly the same way as for
FCIQMC:

$ reblock_hande.py --quiet --start 100000 co_ccmc.out





giving

Recommended statistics from optimal block size:

                     # H psips \sum H_0j N_j        N_0       Shift Proj. Energy
ccmc/co_ccmc.out  1066600(100)     -6510(10)  21040(40)  -0.3092(6)  -0.30925(7)





Due to the sampling of the wavefunction in CCMC, it is more prone to “blooming”
events where many particles are created in a single spawning event than is
FCIQMC.  Details of blooming during a calculation are reported at the end of the
output.  It can be seen that significant blooming occurred.  This substantially
increases the stochastic error, and in particularly severe cases can cause the
calculation to not give a correct result due to the instability.  These
events can be avoided by reducing the timestep, but the timestep
required to eliminate them entirely is often prohibitively small.  Another way
of reducing them is the use of the cluster_multispawn_threshold keyword,
whereby large spawning attempts are divided into a number of smaller spawns:

sys = read_in {
    int_file = "CO.CCPVDZ.FCIDUMP",
    nel = 14,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-3,
        mc_cycles = 10,
        nreports = 1e5,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 1e4,
        target_population = 1e6,
	real_amplitudes = true,
    },
    ccmc = {
	cluster_multispawn_threshold = 10,
    },
    reference = {
        ex_level = 3,
    },
}





Running as before, and inspecting the output,
it can be seen that there are now no blooms.  Additionally, plotting the population growth
and comparing to the previous plot we see that there are now no spikes in the population:

(Source code, png, hires.png, pdf)
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This substantially reduces the stochastic error:

Recommended statistics from optimal block size:

                               # H psips \sum H_0j N_j       N_0       Shift Proj. Energy
ccmc/co_ccmc_multispawn.out  1066160(30)     -11191(1)  36178(7)  -0.3091(1)  -0.30933(3)





The extra spawning causes the calculation to run more slowly, but the reduction in
error bars can often more than make up for this.




          

      

      

    

  

    
      
          
            
  
Density Matrix Quantum Monte Carlo

In this tutorial we will run DMQMC on the 2D Heisenberg model and the uniform electron gas.
The input and output files can be found under the documentation/manual/tutorials/calcs/dmqmc
subdirectory of the source distribution.  Knowledge of the terminology and theory given in
[Booth09], [Blunt14] and [Malone15] is assumed.

To begin we will focus on the 6x6 antiferromagnetic Heisenberg model on a square lattice with periodic
boundary conditions. The input file for this system is given as

sys = heisenberg {
    lattice = {
        {6, 0},
        {0, 6},
    },
    J = -1.0,
    ms = 0,
}

dmqmc {
    sys = sys,
    qmc = {
        tau = 0.001,
        init_pop = 5e6,
        rng_seed = 19838,
        mc_cycles = 10,
        nreports = 500,
        shift_damping = 0.5,
        target_population = 5e6,
        state_size = -400,
        spawned_state_size = -400,
    },
    dmqmc = {
        beta_loops = 1,
    },
    operators = {
        energy = true,
        excit_dist = true,
    },
}





and is largely analogous to that found in the FCIQMC tutorial. We
refer the reader to the discussion there and the manual for system specific input options.
Note that init_pop here controls the population with which the density matrix at
\(\beta=0\) is sampled. Typically the shift is allowed to vary from the beginning of
a simulation by setting target_pop equal to init_pop. Here we will attempt to run to
a final temperature of \(\beta = 5/J\).
The beta_loops option determines the number of independent simulations over which
observables are averaged, see dmqmc options for more options. The operators table
specifies which observables are to be evaluated in a given simulation. Here only the total
energy is considered, a full list is available in operators options.

An issue encountered when applying DMQMC to larger systems is that the population on the
diagonal (denoted Trace in the output file) decays with increasing \(\beta\) which
results in poor estimates for observables. The seriousness of this problem needs to be
assessed on a system by system basis and should be tested for as a first step, which we’ll
do now.

To do this we set beta_loops to 1 in the input file and run the code as:

$ aprun -B hande.x heisenberg_dmqmc.lua > heisenberg_dmqmc.out





We find that for this system the population on the diagonal does indeed decay to zero
rapidly:

(Source code, png, hires.png, pdf)
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The source of this problem can be investigated by analysing the distribution of psips on
different excitation levels of the density matrix, which was calculated in anticipation of
this result using the excit_dist option in the operators table.  Here the excitation
level is defined as the difference between the bra and ket of a density matrix element
i.e., number of spin flips or number of particle-hole pairs for electronic systems.
We see the majority of the total weight is redistributed from the diagonal to highly
excited determinants.

(Source code, png, hires.png, pdf)
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To overcome this [Blunt14] invented an unbiased importance sampling scheme to encourage psips to
stay on or near the diagonal by penalising spawning moves away from excitation levels.
This is sensible as typically the majority of the weight contributing to most physically
significant observables originates from the determinants at lower excitation levels which
we wish to sample more regularly.

Practically this amounts to first running a calculation with the find_weights
option. This will output importance sampling weights which are appropriate as input for the
production calculation. It is worthwhile to run the calculation for a few beta_loops
to ensure the weights are not fluctuating too much, and also check they don’t fluctuate too
much with the target_population. The algorithm currently tries to ensure that the
number of walkers on each excitation level is roughly constant once the ground state is
thought to have been to be reached. The iteration number where this is deemed to have
been reached is controlled by the find_weights_start option.

For this system we do

$ aprun -B hande.x heisenberg_find_weights.lua > heisenberg_reweighted.out





Here we first run a simulation for 10 beta loops to find the weights and then use the last
iteration’s weights as input to the production calculation. This procedure can simplified
using lua as seen in the input file.

To see what is going on we can copy the weights from the output file and run for a single
iteration and again examine the excitation distribution

$ aprun -B hande.x heisenberg_reweight_single.lua > heisenberg_reweight_single.out





and we find that the psips are now more equally distributed among excitation levels:

(Source code, png, hires.png, pdf)


[image: ../../_images/dmqmc-3.png]

The results of the full reweighted calculation can be analysed using the
finite_temperature_analysis.py script provided in the tools/dmqmc subdirectory:

$ finite_temp_analysis.py heisenberg_reweighted.out  > heisenberg_reweighted_block.out





Finally, we can plot the results of the internal energy, \(U\), as a function of
temperature:

(Source code, png, hires.png, pdf)
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Interaction Picture Density Matrix Quantum Monte Carlo

It turns out that the original formulation of DMQMC can run into problems for moderately
weakly interacting systems which are relatively well described by Hartree–Fock theory. An
extreme example of this is the uniform electron gas (UEG) especially at higher densities
(low \(r_s\)). This issue is largely overcome by switching to the interaction picture
which enables us to start from a (temperature dependent) mean-field distribution at
\(\tau=0\) ensuring low energy determinants are initially sampled. See [Malone15] for
details. For systems with a good mean-field ground state the user should consider using
IP-DMQMC.

Most of the running details for IP-DMQMC are the same as for DMQMC, however there are some
additional considerations. This is best demonstrated by running a simulation. We will
focus on a 7-electron, spin polarised system in 319 plane waves at \(r_s=1\).

Looking at the input file

sys = ueg {
    nel = 7,
    ms = 7,
    sym = 1,
    dim = 3,
    cutoff = 10,
    rs = 1,
}

dmqmc {
    sys = sys,
    qmc = {
        tau = 0.001,
        rng_seed = 7,
        init_pop = 10000,
        mc_cycles = 10,
        nreports = 100,
        target_population = 10000,
        state_size = -200,
        spawned_state_size = -100,
    },
    dmqmc = {
        fermi_temperature = true,
        all_sym_sectors = true,
        beta_loops = 100,
    },
    ipdmqmc = {
        target_beta = 1.0,
        initial_matrix = 'free_electron',
        grand_canonical_initialisation = true,
        symmetric = false,
    },
    operators = {
        energy = true,
    },
}





we see most of the same options are present as for dmqmc. Note that unlike DMQMC where
estimates for the whole temperature range are gathered in a single simulation, in IP-DMQMC
only one temperature value is (directly) accessible, specified by the target_beta
option. We’ve also set the energy scale to be determined by the Fermi energy of the
corresponding (thermodynamic limit) free electron gas so that the temperatures are
interpreted as fractions of the Fermi temperature (here \(\Theta = 0.5\).
all_sym_sectors ensures all momentum symmetry sectors are averaged over. To average
over spin polarisation the all_spin_sectors option must be specified.

Moving on through the ipdmqmc table we’ve set the initial_matrix to be the free
electron density matrix, i.e., Fermi-Dirac like. Additionally we’re using the
grand_canonical_initialisation option to initialise this density matrix (see
[Malone15]). This is the recommended method to initialise the density matrix; the
Metropolis algorithm should only be used for testing.

Finally we will use the asymmetric form of the original IP-DMQMC algorithm by specifying
symmetric to be false. The symmetric algorithm is somewhat experimental but can lead to better
estimates for quantities other that the internal energy especially at lower temperatures.
This is thought to be due to sampling issues at low temperatures where the initial mean field
guess becomes significantly different (in terms of energy scales) to the fully interacting theory.
Symmetrising the equations allows psips to move along rows and which improves sampling.
See [Malone16].

Running the code

$ hande.x ipdmqmc_ueg.lua > ipdmqmc_ueg.out





and analysing the output:

$ finite_temp_analysis.py ipdmqmc_ueg.out > ipdmqmc_ueg_block.out





we find

(Source code, png, hires.png, pdf)
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where again only estimates at the final iteration are physical, i.e., when
\(\tau=\beta\). Note that the estimates do not contain a Madelung constant.

The initiator approximation can significantly extend the range of applicability of DMQMC
but is somewhat experimental. See the options, in particular initiator_level in the
manual for more discussion. The user should ensure results are meaningful by comparing
answers at various walker populations. See [Malone16] for further discussion.




          

      

      

    

  

    
      
          
            
  
Canonical Estimates

In this tutorial we will discuss how estimates for various mean-field properties of
a system can be evaluated in the canonical ensemble at finite temperatures. These
estimates are useful for basis set extrapolation as well as comparison to the fully
interacting results and are non-trivial to evaluate analytically.  See [Malone15] for
details.

The input file is fairly simple:

sys = ueg {
    nel = 7,
    ms = 7,
    dim = 3,
    cutoff = 10,
    rs = 1,
}

canonical_estimates {
    sys = sys,
    canonical_estimates = {
        beta = 1,
        nattempts = 10000,
        ncycles = 1000,
        fermi_temperature = true,
    },
}





Here we attempt to generate N particle states making nattempts attempts and then run
the simulation for ncycles*nattempts iterations in total. The only other options
available are the inverse temperature desired, which can be scaled by the Fermi
temperature (where appropriate).  Here we restrict ourself to the fully spin polarised UEG
in M=389 plane waves, which can be compared to the IP-DMQMC simulation in the DMQMC
tutorial.

Running the input file we find

$ hande.x canonical_estimates.lua >  canonical_estimates.out





Inspecting the output, we
see a number of columns for various estimates including the kinetic, potential, internal,
free energy and entropy - precise definitions of everything can be found in the output
file.  The data can be analysed to find the mean and standard error using the
analyse_canonical.py script in the tools/canonical_energy subdirectory:

$ analyse_canonical.py canonical_estimates.out





which gives

          Beta            U_0      U_0_error            T_0      T_0_error             V_0      V_0_error    N_ACC/N_ATT  N_ACC/N_ATT_error             F_0      F_0_error            S_0      S_0_error           T_HF     T_HF_error           U_HF     U_HF_error            V_HF     V_HF_error
1.00000000e+00 3.34489604e+01 7.12207413e-03 3.42505858e+01 7.00598613e-03 -8.01625332e-01 1.43282029e-04 1.67618487e-01     1.16924926e-04 -1.83693842e+01 2.03921704e-03 1.79999929e+01 2.45760105e-03 3.37906337e+01 6.93061658e-03 3.29774580e+01 7.04945348e-03 -8.13175652e-01 1.46382195e-04





In particular, we can compare the values of \(U_0\) and
\(U_{\mathrm{HF}}\) to the value of 32.91(4) Ha from the IP-DMQMC tutorial.




          

      

      

    

  

    
      
          
            
  
Shoulder Plots

This tutorial looks further into finding the optimal target particle population
in more detail. It is advisable to have read the FCIQMC and CCMC tutorials
before this one. More information and details on shoulder plots can be found in [Spencer15].

The example used here is a CCSDT Monte Carlo calculation on water in a cc-pVDZ basis [Dunning89].
As in the CCMC tutorial, the integrals were calculated with PSI4
(see Generating integrals for details). Input and output files are in documentation/manual/tutorials/calcs/shoulder/.

The first calculation was run using

sys = read_in {
    int_file = "H2O_INTDUMP",
    nel = 10,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-4,
        mc_cycles = 10,
        nreports = 2e4,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 200,
        real_amplitudes = true,
	target_population = 3e5,
    },
    reference = {
        ex_level = 3,
    },
}





Just like FCIQMC, a plateau can be seen in a total population vs iteration
plot, which indicates roughly the minimum particle number to make the calculation
stable:

(Source code, png, hires.png, pdf)
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The plateau is clearly visible at around 20000 particles.  This is one technique but the
plateau is frequently not so easy to observe by visual inspection, especially for CCMC and
being able to estimate it computationally is useful for analysing large numbers of
calculations.

In the beginning of a typical simulation, only the reference is occupied. Its particles
then spawn to occupy parts of the remaining Hilbert space, making the total population
grow at a greater pace than the population on the reference does. At the plateau
point, annihilation, spawning and death balance each other which temporarily
leads to a constant total population while the reference population keeps growing.
After a bit, the total population grows again and leaves the plateau. It then
grows at a smaller or the same rate as the reference population because the system is now
converged and the distribution of particles stochastically represents the
ground state wavefunction of the system. See [Spencer12] and [Spencer15] for details.

The ratio of total population to population on the reference therefore peaks at roughly
the plateau with respect to the total population. A good way to find the position
of the plateau is therefore to look at the ratio of total population to
population on the reference vs total population plots and find the position of
the peak.  We call this “shoulder” plot and the peak, or “shoulder height”,
is an upper limit for the position of the plateau, see [Spencer15]. The shoulder plot for our example
from above is:

(Source code, png, hires.png, pdf)
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The position of the shoulder is at about 20000 which corresponds to the position
of the plateau.


Note

pyhande contains two functions to estimate the position of the
plateau/shoulder: pyhande.analysis.plateau_estimator(), which looks
for the peak in the shoulder plot [Spencer15], and pyhande.analysis.plateau_estimator_hist(),
which uses a histogram approach to identifying the plateau [Shepherd14].  As a result
of the difference in approaches, the former tends to pick up the population at the
start of the plateau whilst the latter favours the end of the plateau and is less well
suited to cases without a clear plateau.

In this case, plateau_estimator gave 18481 with an estimated standard error of 38
for the shoulder height and plateau_estimator_hist gave 20155 (rounded to 0 d.p.).
The difference is not important as the plateau is not exactly constant; its value to a
few significant values is the important quantity.



The position of the plateau/shoulder is somewhat sensitive to input parameters and can be
varied with changing the time step tau or the cluster_multispawn_threshold (if
applicable) for example, more details below. A large initial population init_pop can
also lead to overshooting of the shoulder.


Effects of the Time Step

Now we will run another calculation with a higher time step, see input file below:

sys = read_in {
    int_file = "H2O_INTDUMP",
    nel = 10,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-3,
        mc_cycles = 10,
        nreports = 3.6e3,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 200,
        real_amplitudes = true,
	target_population = 3e5,
    },
    reference = {
        ex_level = 3,
    },
}





The two resulting shoulders are shown in the following graph:

(Source code, png, hires.png, pdf)


[image: ../../_images/shoulder-3.png]

A smaller time step can lead to fewer particles at the shoulder position, as described in [Booth09], [Vigor16].



Effects of Cluster Multispawn Threshold

This part looks at changing the multispawn threshold. This is another feature which
can change the number of particles at the shoulder. Positive effects of that have already
been shown in CCMC. Note that while changing the time step changes
the position of the plateau for FCIQMC for example as well, cluster multispawn threshold
is specific to CCMC.
The lower the multispawn threshold, the lower will be the number of “blooming”
events which spawn multiple particles at the same spawning attempt. “Blooming”
events can lead to greater uncertainty as the wavefunction is then sampled in a
more coarse and less fine manner. It is therefore not surprising that less particles
are needed to converge to the correct wavefunction for a lower multispawn
threshold.

To demonstrate the effects of decreasing the multispawn threshold, we will run
the following calculation with a low multispawn threshold:

sys = read_in {
    int_file = "H2O_INTDUMP",
    nel = 10,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-4,
        mc_cycles = 10,
        nreports = 2e4,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 200,
        real_amplitudes = true,
	target_population = 3e5,
    },

    ccmc = {
	cluster_multispawn_threshold = 0.1,
    },

    reference = {
        ex_level = 3,
    },
}





The plot below compares the shoulder plot of this and the first calculation on top of this tutorial:

(Source code, png, hires.png, pdf)
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Note that “multispawn threshold = none” means that there is no threshold within
computer number representation limits.

Clearly, setting a low multispawn threshold lowers the total number of particles at
the shoulder.  This is, like with a smaller timestep, due to more efficient sampling: an
excitor with a large amplitude is allowed to explore more of the space (via multiple
spawning attempts) than an excitor with a smaller amplitude.



Effects of Initial Population

In this part of the tutorial we will see that a large initial population can
lead to overshooting the shoulder.

As a demonstration, we look at almost the same calculation as the first one but
with a larger initial population.

sys = read_in {
    int_file = "H2O_INTDUMP",
    nel = 10,
    ms = 0,
}

ccmc {
    sys = sys,
    qmc = {
        tau = 1e-4,
        mc_cycles = 10,
        nreports = 2e4,
        state_size = -500,
        spawned_state_size = -200,
        init_pop = 800,
        real_amplitudes = true,
	target_population = 3e5,
    },
    reference = {
        ex_level = 3,
    },
}





The following plot compares the original with the calculation starting with a
large initial population:

(Source code, png, hires.png, pdf)
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We see that the calculation with a larger initial population has a shoulder at
a larger number of particles, effectively overshooting the shoulder.
At yet larger numbers of particles than this, we expect the calculation to be
stable once population control is enabled (i.e. the shift is allowed to vary).

The overshooting can be explained by considering that the only significant difference
between the two curves above is that they start with a different population at
the reference. Before they reach a shoulder, each calculation has a very fast
growth in total population without changing the reference population.
This results in an initial linear growth on the shoulder plots, which lasts until
the reference populations begin to grow.

The calculation with the greater initial population will require a greater total
population to reach this point, and it occurs when this calculation’s curve hits
that which begins with a smaller population.

Once a calculation has passed its shoulder, the location on the shoulder plot
can generally be used to describe its ‘state’.  Two calculations with different
initial populations, but otherwise identical, will end up on the same curve once
equilibrated, and will follow the curve if total particle numbers are allowed to
grow.
Modifying the algorithm (e.g. with multispawn_threshold) or changing the timestep
will cause the equilibrium curve to shift position, and therefore affect the position
of the shoulder.





          

      

      

    

  

    
      
          
            
  
Solid state calculations

In this tutorial we will run periodic boundary conditions CCMC calculation on a diamond
crystal in STO-3G basis with 2x1x1 sampling of the Brillouin zone. Familiarity with
CCMC and FCIQMC tutorials is assumed.
The input and output files can be found under the documentation/manual/tutorials/calcs/ccmc_solids subdirectory of the source distribution.

First of all, we need the one- and two- electron integrals from an external source. We will
use PySCF [http://www.pyscf.org/] software package [Sun18] to perform preliminary Hartree-Fock calculation
and generate the integrals. PySCFDump script can be used to save the integrals in the FCIDUMP
format readable by HANDE 1 .

To correctly address exchange divergence, additional exchange integrals are needed.
Those are written in a FCIDUMP_X file by PySCFDump. Theoretical details of this procedure
will be elaborated on as part of an upcoming paper.

Cell object can be conveniently prepared using build_cell function of the pyscfdump.helpers
module and ASE [http://wiki.fysik.dtu.dk/ase/] library. Set of basis functions, kinetic energy cutoff and pseudopotential
used are specified.

The run_khf function of the pyscfdump.scf module is used to run the HF calculation.
Number of k-points in each dimension is specified. By default, the Monkhorst-Pack grid is used. If
gamma is set to true, the grid will be shifted to include the Gamma point. Exchange divergence
treatment scheme should also be chosen. The function returns the converged HF calculation object
and a list of scaled k-points (i.e. (0.5,0.5,0.5) is at the very corner of the Brillouin zone).

Finally, fcidump function of the pyscfdump.pbcfcidump module is used to dump the integrals
to a file. Name of the resulting file, SCF calculation object, number of k points, list of
scaled k points and boolean variable MP (true if the grid is Monkhorst-Pack - i.e. not shifted to
include the gamma point for even grids) must be provided.

from ase.lattice import bulk
import pyscfdump.scf as scf
from pyscfdump.helpers import build_cell
from pyscfdump.pbcfcidump import fcidump

A2B = 1.889725989	#angstrom to bohr conversion

a=3.567		#lattice parameter
ke=1000		#kinetic energy cutoff in units of rydberg
basis='sto-3g'	#basis set choice
nmp = [2,1,1]	#k point sampling

#prepare the cell object
ase_atom = bulk('C', 'diamond', a=a*A2B)
cell = build_cell(ase_atom, ke=ke, basis=basis, pseudo='gth-pade')

#run the HF calculation
kmf,scaled_kpts = scf.run_khf(cell, nmp=nmp, exxdiv='ewald', gamma=True)

#dump the integrals
fcidump('fcidumpfile',kmf,nmp,scaled_kpts,False)






Now we are ready to run the CCMC calculation. System definition is read in from the FCIDUMP files.
There are two points to notice



	path to files with additional exchange integrals is specified as ex_int_file


	to properly exploit translational symmetry in the crystal lattice, the orbitals and hence the integrals must be complex. The complex mode of HANDE is enabled by setting complex = true. Consequently, numbers of particles on excitors also have both real and imaginary part, as well as projected energy.







In a non-initiator calculation, we try setting the time step tau as big as possible before too many blooms happen.
A shoulder plot should be used to determine target_population.
The heat_bath excitation generator [Holmes16] (adapted to HANDE as described in [Neufeld19])
is often a good choice in small systems. The input script used in this tutorial is:

sys = read_in {
    int_file = "fcidumpfile",
    complex = true,
    ex_int_file = "fcidumpfile_X",
}
ex_l=2

ccmc {
    sys = sys,
    qmc = {
        tau = 0.02,
        rng_seed = 13086,
        mc_cycles = 10,
        init_pop = 200,
        nreports = 50000,
        target_population = 1e4,
        state_size = -800,
        spawned_state_size = -500,
        excit_gen = "heat_bath",
        real_amplitudes = true,
    },
    ccmc = {
	even_selection = true,
        full_non_composite=true,
    },
    reference = {
        ex_level = ex_l,
    },
    blocking = {
        blocking_on_the_fly = true,
        auto_shift_damping = true,
    },
    restart = {
        write = true,
    },
}





The Hilbert space of the system we are dealing with is quite small and so is the target population.
The general rule is that in order to use MPI parallelism, each process should contain at least \(10^{5}\)
occupied excitors [Spencer18]. Having fewer excitors on each process is both inefficient and in extreme cases can lead
to biased results. This is why we will use only one process here. However, use of openMP shared
memory threads is recommended in order to make full use of the available resources.

$ hande.x ccmc.lua > diamond_ccmc.out





We can now plot the population

(Source code, png, hires.png, pdf)


[image: ../../_images/solids-1.png]

and correlation energy:

(Source code, png, hires.png, pdf)


[image: ../../_images/solids-2.png]

It is worth noting that the projected energy is in fact a complex quantity, whose imaginary part evaluates to zero
in a non-trivial way [Booth13]. For the plot we calculate the result by only
using real parts of both \(\sum_j H_{0j} N_j(\tau)\) and \(N_0(\tau)\), using the fact that

\(E(\tau) = \Re\left(\frac{\sum_j H_{0j} N_j(\tau)}{N_0(\tau)}\right) = \frac{\Re\left(\sum_j H_{0j} N_j(\tau)\right)}{\Re\left(N_0(\tau)\right)}\)

where the second equality holds provided that imaginary part of \(E(\tau)\) is zero.

The reblocking analysis uses magnitudes rather than real parts as this prevents problems with potential changes of phase during the calculation. Neverthless, for a well behaved calculation such as the one presented here, it is found that reblocking using real parts would give identical results.

In any case, the shift remains a strictly real measure of the correlation energy 2.

To analyse the calculation we can use reblock_hande.py script:

$ reblock_hande.py --quiet diamond_ccmc.out





which results in:

Block from: 20790
Recommended statistics from optimal block size:

                       Block from  # H psips \sum H_0j N_j      N_0        Shift Proj. Energy
diamond_ccmc_2.out 2.07900000e+04  33940(10)      -1015(2)  3328(6)  -0.30485(8)  -0.30495(5)







Footnotes


	1

	The pyscfdump module code will be released shortly.  For preliminary access contact Alex Thom at ajwt3@cam.ac.uk .



	2

	As discussed  in [Booth13] for FCIQMC - the CCMC case is exactly analogous.








          

      

      

    

  

    
      
          
            
  
pyhande

pyhande provides powerful abstractions for analysing HANDE calculations.

HANDE includes many scripts for common analysis tasks which are (typically) thin
wrappers around pyhande.  More complicated data analysis or examining large
numbers of output files can be easily performed by using pyhande directly from a
python interpreter or a custom script.

pyhande can extract data from output produced by HANDE and perform a variety of
data analysis tasks on the data obtained.  See the documentation for each
submodule for more details.


Note

Sections 2.7-2.11 refer to a new object oriented version of pyhande. Tutorials
on how to use this version may be found in tools/pyhande/tutorials.





	pyhande.analysis

	pyhande.canonical

	pyhande.extract

	pyhande.lazy

	pyhande.utils

	pyhande.weight

	pyhande.data_preparing

	pyhande.error_analysing

	pyhande.extracting

	pyhande.helpers

	pyhande.results_viewer








          

      

      

    

  

    
      
          
            
  
pyhande.analysis

Analysis of data from FCIQMC and CCMC calculations.


	
pyhande.analysis.projected_energy(reblock_data, covariance, data_length, sum_key='\\sum H_0j N_j', ref_key='N_0', col_name='Proj. Energy')

	Calculate the projected energy estimator and associated error.

The projected energy estimator is given by


\[E = \frac{\sum H_0j N_j}{N_0}\]

The numerator and denominator are correlated and so their covariance must be
taken into account.


	Parameters

	
	reblock_data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – reblock data for (at least) the numerator and denominator in the
projected energy estimator.


	covariance (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – covariance at each reblock iteration between (at least) the numerator
and denominator in the projected energy estimator.


	data_length (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – number of data points in each reblock iteration.


	sum_key (string) – column name in reblock_data containing \(\sum H_0j N_j\), i.e. the sum
of the population weighted by the Hamiltonian matrix element with the trial
wavefunction.


	ref_key (string) – column name in reblock_data containing \(N_0\), i.e. the population of
the trial wavefunction (often/originally just a single determinant).






	Returns

	proje – The projected energy estimator at each reblock iteration.



	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]






See also

pyblock.pd_utils.reblock() [https://pyblock.readthedocs.io/en/latest/pyblock.pd_utils.html#pyblock.pd_utils.reblock]








	
pyhande.analysis.qmc_summary(data, keys=('\\sum H_0j N_j', 'N_0', 'Shift', 'Proj. Energy'), summary_tuple=None)

	Summarise a reblocked data set by the optimal block.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – reblocked data (i.e. data with the reblock iteration as the index).


	keys (list of strings) – columns (by top-level index) of the data table to inspect.  Each top-level
column must contain an optimal block column.


	summary_tuple ((pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], list of strings)) – Optionally append summary data to this tuple. Allows repeated calling of
this function.






	Returns

	
	opt_data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data for each column from the optimal block size of that column.


	no_opt (list of strings) – list of columns for which no optimal block size was found.















	
pyhande.analysis.extract_pop_growth(data, ref_key='N_0', shift_key='Shift', min_ref_pop=10)

	Select QMC data during which the population was allowed to grow.

We define the region of population growth as the period in which the shift is
held constant.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – HANDE QMC data. pyhande.extract.extract_data_sets() can be used to
extract this from a HANDE output file.


	ref_key (string) – column name in reblock_data containing the number of psips on the reference
determinant.


	shift_key (string) – column name in reblock_data containing the shift.


	min_pop (int [https://docs.python.org/2.7/library/functions.html#int]) – discard data entries with fewer than min_pop on the reference.






	Returns

	pop_data – The subset of data prior to the shift being varied.



	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]










	
pyhande.analysis.plateau_estimator(data, total_key='# H psips', ref_key='N_0', shift_key='Shift', min_ref_pop=10, pop_data=None)

	Estimate the (plateau) shoulder from a FCIQMC/CCMC calculation.

The population on the reference starts to grow exponentially during the plateau,
whilst the total population grows exponentially from the start of the
calculation before stabilising (perhaps only briefly) during the plateau phase.
As a result, the ratio of the total population to the population on the
reference is at a maximum at the start of the plateau.

The shoulder estimator is defined to be mean of the ten points with the smallest
proportion of the population on the reference (excluding points when the
population drops below min_pop excips (psips). The shoulder height is the total
population at this point.

Credit to Alex Thom for original implementation.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – HANDE QMC data. pyhande.extract.extract_data_sets() can be used to
extract this from a HANDE output file.


	total_key (string) – column name in reblock_data containing the total number of psips.


	ref_key (string) – column name in reblock_data containing the number of psips on the
reference determinant.


	shift_key (string) – column name in reblock_data containing the shift.


	min_ref_pop (int [https://docs.python.org/2.7/library/functions.html#int]) – exclude points with less than min_ref_pop on the reference.


	pop_data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The subset of data prior to the shift being varied.  Calculated if not
supplied from extract_pop_growth.






	Returns

	plateau_data – An estimate of the shoulder (plateau) from a FCIQMC (CCMC) calculation,
along with the associated standard error.



	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]










	
pyhande.analysis.plateau_estimator_hist(data, total_key='# H psips', shift_key='Shift', pop_data=None, bin_width_fn=None)

	Estimate the plateau height via a histogram of the population.

The population (approximately) stabilises during the plateau phase.  By taking
a histogram of the population, the plateau can be estimated from the histogram
bin with greatest frequency.  Due to the exponential population growth outside
of the plateau, we histogram the logarithm of the population.

This tends to give similar numbers to shoulder_estimator, though may be less
useful for shoulder-like plateaus.  Detecting a plateau automatically is tricky
so having multiple approaches for comparison helps with corner cases.

Used in [Shepherd14].

Credit to James Shepherd for the idea and original (perl) implementation.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – HANDE QMC data. pyhande.extract.extract_data_sets() can be used to
extract this from a HANDE output file.


	total_key (string) – column name in reblock_data containing the total number of psips.


	shift_key (string) – column name in reblock_data containing the shift.


	pop_data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The subset of data prior to the shift being varied.  Calculated if not
supplied from extract_pop_growth.


	bin_width_fn (function) – A function which calculates the bin width in the histogram based upon
pop_data.  12500/len(data)^2 (obtained empirically) is used if not supplied.






	Returns

	plateau – An estimate of the population at the plateau.



	Return type

	float [https://docs.python.org/2.7/library/functions.html#float]





References


	Shepherd14

	J.J. Shepherd et al., Phys. Rev. B 90, 155130 (2014).










	
pyhande.analysis.inefficiency(opt_block, dtau, iterations, sum_key='\\sum H_0j N_j', ref_key='N_0', total_key='# H psips', proje_key='Proj. Energy')

	Estimate the inefficiency of a calculation from the blocked data.

The statistical error of an ideal FCIQMC calculation decreases with the
square-root of number of steps, \(N\), total number of particles,
\(N_p\) and (at sufficiently low values) timestep, \(\delta\tau\).

We define the inefficiency, \(a\), as a quantity independent of these, which
depends on purely the algorithm and system studied, and can be used to determine
the expected runtime to achieve a given error.  We provide an estimate of this
from the best estimate of the error in the projected energy, \(\sigma_E\):


\[a = \sigma_E \sqrt{N_p N \delta\tau}\]

Error bars are (over)-estimated with a simple error propagation, but since no
information about the covariance of the error estimates is available, this will
always be an overestimate.

Used in [Vigor16].

Credit to William Vigor for the original pyhande implementation.


	Parameters

	
	opt_block (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Optimally blocked HANDE QMC data.
func:pyhande.analysis.qmc_summary can be used to
extract this from reblocked HANDE data.


	dtau (float [https://docs.python.org/2.7/library/functions.html#float]) – length of an imaginary time timestep.


	iterations (integer) – number of iterations (timeteps) in the reblocked data.


	sum_key (string) – column name in reblock_data containing \(\sum H_0j N_j\), i.e. the sum
of the population weighted by the Hamiltonian matrix element with the trial
wavefunction.


	ref_key (string) – column name in reblock_data containing \(N_0\), i.e. the population of
the trial wavefunction (often/originally just a single determinant).


	total_key (string) – column name in reblock_data containing the total number of psips.


	proje_key (string) – key for projected energy index in opt_block.






	Returns

	ineff – A data frame with index ‘inefficiency’ and columns
‘mean’ and ‘standard error’
or None if the appropriate data is not available.



	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]





References


	Vigor16

	
	
	Vigor, et al., J. Chem. Phys. 144, 094110 (2016); doi: 10.1063/1.4943113



















          

      

      

    

  

    
      
          
            
  
pyhande.canonical

Analysis of data from  canonical thermodynamic calculations.


	
pyhande.canonical.analyse_hf_observables(means, covariances, nsamples)

	Perform Error analysis for Hartree-Fock estimates which
are the ratio of two quantities.


	Parameters

	
	means (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data frame containing means of verious observables.


	covariances (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Data frame containing covariances between various observables.


	nsamples (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of samples contributing to estimates and standard errors






	Returns

	results – Averaged Hartree-Fock estimates along with error estimates.



	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]










	
pyhande.canonical.estimates(metadata, data)

	Perform error analysis for canonical thermodynamic estimates.


	Parameters

	
	metadata (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – metadata (i.e. calculation information, parameters and settings) extracted
from output files.


	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – HANDE QMC data.






	Returns

	results – Averaged estimates.



	Return type

	pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series]












          

      

      

    

  

    
      
          
            
  
pyhande.extract

Extract data from the output of a HANDE calculation.


Note

All pyhande analysis procedures assume data is in the format
produced by extract_data() and extract_data_sets().




	
pyhande.extract.extract_data_sets(filenames)

	Extract QMC data tables from multiple HANDE calculations.


	Parameters

	filenames (list of strings) – names of files containing HANDE QMC calculation output.


Note

Files compressed with gzip, bzip2 or xz (python 3 only) are
automatically decompressed.







	Returns

	data – Calculation output represented by a tuple for each calculation, consisting
of metadata (dict) and a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] (MC calculations) or
pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] (other calculations) containing the calculation
output/results.



	Return type

	list of (dict, pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series])






See also


	extract_data()

	underlying data extraction implementation.












	
pyhande.extract.extract_data(filename)

	Extract QMC data table from a HANDE calculation.


	Parameters

	filename (string) – name of file containing the HANDE QMC calculation output.


Note

Files compressed with gzip, bzip2 or xz (python 3 only) are
automatically decompressed.







	Returns

	data_pairs – Calculation output represented by a tuple for each calculation, consisting
of metadata (dict) and a pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] (MC calculations) or
pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series] (other calculations) containing the calculation
output/results.



	Return type

	list of (dict, pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series])












          

      

      

    

  

    
      
          
            
  
pyhande.lazy

Tools for the lazy amongst us: automation of common HANDE analysis tasks.


	
pyhande.lazy.find_starting_iteration_mser_min(data, md, start_max_frac=0.9, n_blocks=100, verbose=None, end=None)

	Find the best iteration to start analysing CCMC/FCIQMC data based on MSER minimization scheme.


Warning

Use with caution, check whether output is sensible and adjust parameters
if necessary.



This function gives an optimal estimation of the starting interations
based on MSER minimization heuristics.
This methods decides the starting iterations \(d\) as minimizing an evalualtion
function
MSER(\(d\)) = \(\Sigma_{i=1}^{n-d} ( X_{i+d} - X_{mean}(d) ) / (n-d)^2\).
Here, \(n\) is length of time-series, \(X_i\) is ‘sum H_0j N_j’ / ‘N_0’ of \(i\)-th step, and
\(X_{mean}\) is the average of \(X_i\) after the \(d\)-th step.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Calculation output for a FCIQMC or CCMC calculation.


	md (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Metadata corresponding to the calculation in data.


	n_blocks (int [https://docs.python.org/2.7/library/functions.html#int]) – This analysis takes long time when \(n\) is large.
Thus, we pick up \(d\) for every ‘n_blocks’
samples, calculate MSER(\(d\)), and decide the
optimal estimation of the starting iterations only
from these d.


	start_max_frac (float [https://docs.python.org/2.7/library/functions.html#float]) – MSER(d) may oscillate when become unreanably small
when \(n-d\) is large. Thus, we calculate MSER(\(d\))
for \(d\) < (\(n\) * start_max_frac) and
give the optimal estimation of the starting iterations
only in this range of \(d\).


	verbose (int [https://docs.python.org/2.7/library/functions.html#int]) – Inactive. This valuable does not change anything.


	end (int [https://docs.python.org/2.7/library/functions.html#int] or None [https://docs.python.org/2.7/library/constants.html#None]) – Last iteration included in analysis. If None, the last iteration included
is the last iteration of the data set.






	Returns

	starting_iteration – Iteration from which to start reblocking analysis for this calculation.



	Return type

	integer










	
pyhande.lazy.lazy_hybrid(calc, md, start=0, end=None, batch_size=1)

	New post-analysis on zero-temperature QMC calcaulations.


Note

std_analysis() is recommended unless custom processing is required
before blocking analysis is performed.



This scheme is made by hybridizing two different post-analysis methods,
AR model and Straatsma. The former (the latter) is comparatively
good at estimating the statistic error for smaller (larger) length
of time-series, respectively. This method just picks up the larger
statistic error from the ones given by both methods. The mathematical
details of both methods are explained in an upcoming paper.


	Parameters

	
	calc (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Zero-temperature QMC calculation output.


	md (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Metadata for the calculation in calc.


	end (start,) – See std_analysis().


	batch_size (int [https://docs.python.org/2.7/library/functions.html#int]) – The energy time-series is coarse-grained by
averaging several sequential samples
into just one sample and the statistic error
is calculated for the coarse-grained time-series.
This variable designates how many sequential
samples are averaged together.






	Returns

	
	info (collections.namedtuple() [https://docs.python.org/2.7/library/collections.html#collections.namedtuple]) – See std_analysis().


	[todo] - Catch ValueError from statsmodels when there is too little


	[todo] - data.















	
pyhande.lazy.std_analysis(datafiles, start=None, end=None, select_function=None, extract_psips=False, reweight_history=0, mean_shift=0.0, calc_inefficiency=False, verbosity=1, starts_reweighting=None, extract_rep_loop_time=False, analysis_method='reblocking', warmup_detection='hande_org')

	Perform a ‘standard’ analysis of HANDE output files.


	Parameters

	
	datafiles (list of strings) – names of files containing HANDE QMC calculation output.


	end (start,) – iteration after which/until which the blocking analysis is performed. The
end iteration is included in analysis, the start iteration is not.
If start is None, then attempt to automatically determine a good iteration
using find_starting_iteration().  If end is None, the last iteration
included is the last iteration of the data set.


	select_function (function) – function which returns a boolean mask for the iterations to include in the
analysis.  Not used if set to None (default).  Overrides start.  See
below for examples.


	extract_psips (bool [https://docs.python.org/2.7/library/functions.html#bool]) – also extract the mean number of psips from the calculation.


	reweight_history (integer) – reweight in an attempt to remove population control bias. According to
[Umrigar93] this should be set to be a few correlation times.


	mean_shift (float [https://docs.python.org/2.7/library/functions.html#float]) – prevent the weights from becoming to large.


	calc_inefficiency (bool [https://docs.python.org/2.7/library/functions.html#bool]) – determines whether inefficiency should be calculated.


	verbosity (int [https://docs.python.org/2.7/library/functions.html#int]) – values greater than 1 print out blocking information when automatically
finding the starting iteration. 0 and 1 print out the starting iteration if
automatically found. Negative values print out nothing from the automatic
starting point search.


	starts_reweighting (list of floats) – used by the reweighting_graph function to pass more than one starting
iteration


	extract_rep_loop_time (bool [https://docs.python.org/2.7/library/functions.html#bool]) – also extract the mean time taken per report loop from the calculation.


	analysis_method (string) – determines which post-analysis method is used to estimate the statistic
error. Currently ‘reblocking’ and ‘hybrid’ are prepared.


	warmup_detection (string) – determines which method is used to decide the starting iterations
to be discarded before calculation the statistic error. Currently
‘hande_org’ and ‘mser_min’ are prepared.






	Returns

	info –

raw and analysed data, consisting of:



	metadata, data

	from pyhande.extract.extract_data_sets().  If data
consists of several concatenated calculations, then the only
metadata object is from the first calculation.



	data_len, reblock, covariance

	from pyblock.pd_utils.reblock() [https://pyblock.readthedocs.io/en/latest/pyblock.pd_utils.html#pyblock.pd_utils.reblock].  The projected energy
estimator (evaluated by pyhande.analysis.projected_energy())
is included in reblock.



	opt_block, no_opt_block

	from pyhande.analysis.qmc_summary().  A ‘pretty-printed’
estimate string is included in opt_block.












	Return type

	list of collections.namedtuple() [https://docs.python.org/2.7/library/collections.html#collections.namedtuple]





Examples

The following are equivalent and will extract the data from the file called
hande.fciqmc.out, perform a blocking analysis from the 10000th iteration
onwards, calculated the projected energy estimator and find the optimal block
size from the blocking analysis:

>>> std_analysis(['hande.fciqmc.out'], 10000)
>>> std_analysis(['hande.fciqmc.out'],
...              select_function=lambda d: d['iterations'] > 10000)





References


	Umrigar93

	Umrigar et al., J. Chem. Phys. 99, 2865 (1993).










	
pyhande.lazy.check_key(calc, key)

	Check if this key is present in calc, and if not, append “_1”.


	Parameters

	
	calc (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Zero-temperature QMC calculation output.


	key (str [https://docs.python.org/2.7/library/functions.html#str]) – key name to check in calc.






	Returns

	key_



	Return type

	
	str

	modified key name.
















	
pyhande.lazy.zeroT_qmc(datafiles, reweight_history=0, mean_shift=0.0)

	Extract zero-temperature QMC (i.e. FCIQMC and CCMC) calculations.

Reweighting information is added to the calculation data if requested.


Note

std_analysis() is recommended unless custom processing is required
before blocking analysis is performed.




	Parameters

	reweight_history, mean_shift (datafiles,) – See std_analysis().



	Returns

	
	calcs (list of pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Calculation outputs for just the zero-temperature/ground-state QMC
calculations contained in datafiles.


	metadata (list of dict) – Metadata corresponding to each calculation in calcs.















	
pyhande.lazy.lazy_block(calc, md, start=0, end=None, select_function=None, extract_psips=False, calc_inefficiency=False, extract_rep_loop_time=False)

	Standard blocking analysis on zero-temperature QMC calcaulations.


Note

std_analysis() is recommended unless custom processing is required
before blocking analysis is performed.




	Parameters

	
	calc (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Zero-temperature QMC calculation output.


	md (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Metadata for the calculation in calc.


	end, select_function, extract_psips, calc_inefficiency, (start,) – extract_rep_loop_time:
See std_analysis().






	Returns

	info – See std_analysis().



	Return type

	collections.namedtuple() [https://docs.python.org/2.7/library/collections.html#collections.namedtuple]










	
pyhande.lazy.filter_calcs(outputs, calc_types)

	Select calculations corresponding to a given list of calculation types.


	Parameters

	
	outputs (list of (dict, pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series])) – List of (metadata, data) tuples for each calculation, as created in
pyhande.extract.extract_data_sets().


	calc_types (iterable of strings) – Calculation types (e.g. ‘FCIQMC’, ‘CCMC’, etc.) to select.






	Returns

	filtered – As in pyhande.extract.extract_data_sets() but containing only the
desired calculations.



	Return type

	list of (dict, pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or pandas.Series [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html#pandas.Series])










	
pyhande.lazy.concat_calcs(metadata, data)

	Concatenate data from restarted calculations to analyse together.


	Parameters

	
	metadata (list of dicts) – Extracted metadata for each calculation.


	data (list of pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Output of each QMC calculation.






	Returns

	
	calcs_metadata (list of dicts) – Metadata for each calculation, with duplicates from restarting dropped.


	calcs (list of pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Output of each QMC calculation, with parts of a restarted calculation combined.















	
pyhande.lazy.find_starting_iteration(data, md, frac_screen_interval=300, number_of_reblockings=30, number_of_reblocks_to_cut_off=1, pos_min_frac=0.8, verbose=0, show_graph=False, end=None)

	Find the best iteration to start analysing CCMC/FCIQMC data.


Warning

Use with caution, check whether output is sensible and adjust parameters if
necessary.



First, consider only data from when the shift begins to vary. We are interested
in finding the minimum in the fractional error in the error of the shift
weighted by 1/sqrt(number of data points left). The error in the error of the
shift and the error in the shift vary as 1/sqrt(number of data points to
analyse) with the number of data points to analyse. If we were looking for the
minimum in either of these quantities, the minimum would therefore be biased to
the lower iterations as then more data points are included in the analysis.
However, we have noticed that the error in the shift and its error fluctuate as
we have less iterations to analyse which means that our search for the minimum
could get trapped easily in a local minimum. We therefore consider their
fraction. As they are divided by each other in the fractional error, the
1/sqrt(number of data points to analyse) gets removed. It is therefore
artificially included as a weight. To be more conservative, we also find the
minimum in the weighted fractional error in the error of # H psips, N_0,
sum H_0j N_j. We then consider the minimum out of these four minima which is
at the highest number of iterations.

The best estimate of the iteration to start the blocking analysis is found by:


	discard data during the constant shift phase.


	estimate the weighted fractional error in the error of the shift, # H psips,
N_0, sum H_0j N_j, by blocking the remaining data \(n\) times, where
the blocking analysis considers the last \(1-i/f\) fraction of the data
and where \(i\) is the number of blocking analyses already performed,
\(n\)  is number_of_reblockings  and \(f\) is
frac_screen_interval.


	find the iteration which gives the minimum estimate of the weighted
fractional error in the error of the shift, numerator of projected energy,
reference and total population. We then focus on the minimum out of these
four minima which is at the highest number of iterations. If this is in the
first pos_min_frac fraction of the blocking attempts, go to 4, otherwise
repeat 2 and perform an additional number_of_reblockings attempts.


	To be conservative, discard the first number_of_reblocks_to_cut_off blocks
from the start iteration, where each block corresponds to roughly the
autocorrelation time, and return the resultant iteration number as the
estimate of the best place to start blocking from.





	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Calculation output for a FCIQMC or CCMC calculation.


	md (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Metadata corresponding to the calculation in data.


	frac_screen_interval (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of intervals the iterations from where the shift started to vary to
the end are divided up into. Has to be greater than zero.


	number_of_reblockings (int [https://docs.python.org/2.7/library/functions.html#int]) – Number of reblocking analyses done in steps set by the width of an interval
before it is checked whether suitable minimum error in the error has been
found. Has to be greater than zero.


	number_of_reblocks_to_cut_off (integer) – Number of reblocking analysis blocks to cut off additionally to the data
before the best iteration with the lowest error in the error. Has to be non
negative. It is highly recommended to not set this to zero.


	pos_min_frac (float [https://docs.python.org/2.7/library/functions.html#float]) – The minimum has to be in the first pos_min_frac part of the tested data to
be taken as the true minimum. Has be to greater than a small number (here
0.00001) and can at most be equal to one.


	verbose (int [https://docs.python.org/2.7/library/functions.html#int]) – If greater than 1, prints out which blocking attempt is currently being
performed.


	show_graph (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Determines whether a window showing the shift vs iteration graph pops up
highlighting where the minimum was found and - after also excluding some
reblocking blocks - which iteration was found as the best starting iteration
to use in reblocking analyses.


	end (int [https://docs.python.org/2.7/library/functions.html#int] or None [https://docs.python.org/2.7/library/constants.html#None]) – Last iteration included in analysis. If None, the last iteration included
is the last iteration of the data set.






	Returns

	starting_iteration – Iteration from which to start reblocking analysis for this calculation.



	Return type

	integer










	
pyhande.lazy.reweighting_graph(datafiles, start=None, verbosity=1, mean_shift=0.0)

	Plot a graph of reweighted projected energy vs. reweighted factor W.

Detecting biases by reweighting is described in [Umrigar93] and [Vigor15] ,
see pyhande.weight for details. The graph produced by this function is similar
to figure 4 in [Vigor15].

A similar function has been published in
Neufeld, V., & Thom, A. J. Research data and further information supporting
“A study of the dense uniform electron gas with high orders of coupled cluster” [Dataset].
https://doi.org/10.17863/CAM.14336 under Attribution 4.0 International (CC BY 4.0).


	Parameters

	
	datafiles (list of strings) – names of files containing HANDE QMC calculation output.


	start (int [https://docs.python.org/2.7/library/functions.html#int] or None [https://docs.python.org/2.7/library/constants.html#None]) – iteration from which the blocking analysis is performed.  If None, then
attempt to automatically determine a good iteration using
find_starting_iteration().


	verbosity (int [https://docs.python.org/2.7/library/functions.html#int]) – values greater than 1 print out blocking information when automatically
finding the starting iteration. 0 and 1 print out the starting iteration if
automatically found. Negative values print out nothing from the automatic
starting point search.


	mean_shift (float [https://docs.python.org/2.7/library/functions.html#float]) – prevent the weights from becoming to large.








References


	Umrigar93

	C.J. Umirigar et al., J. Chem. Phys. 99, 2865 (1993)



	Vigor15

	W.A. Vigor, et al., J. Chem. Phys. 142, 104101 (2015).





Thanks to Will Vigor for original implementation.








          

      

      

    

  

    
      
          
            
  
pyhande.utils

Utility procedures for manipulating HANDE data.


	
pyhande.utils.groupby_beta_loops(data, name='iterations')

	Group a HANDE DMQMC data table by beta loop.


	Parameters

	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – DMQMC data table (e.g. obtained by pyhande.extract.extract_data().



	Returns

	grouped – GroupBy object with data table grouped by beta loop.



	Return type

	pandas.DataFrameGroupBy










	
pyhande.utils.groupby_iterations(data)

	Group a HANDE QMC data table by blocks of iterations.


	Parameters

	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – QMC data table (e.g. obtained by pyhande.extract.extract_data().



	Returns

	grouped – GroupBy object with data table grouped into blocks within which the
iteration count increases monotonically.



	Return type

	pandas.DataFrameGroupBy












          

      

      

    

  

    
      
          
            
  
pyhande.weight

Attempt to remove the population control bias by reweighting estimates.


	
pyhande.weight.reweight(data, mc_cycles, tstep, weight_history, mean_shift, weight_key='Shift')

	Reweight using population control to reduce population control bias.

Reweight estimators linear in the number of psips by the factor:


\[W(\tau, N) = \Pi^{N-1}_{m=0} e^{-A \delta \tau S(\tau - m\delta\tau)}\]

where \(A\) is the number of steps per shift update cycle,
\(\delta\tau\) is the time step and \(S(\tau - m\delta\tau)\) is
the shift at time \(\tau - m\delta\tau\), and \(m\) is the number of
iterations to reweight over.

See [Umrigar93] Eqs. 14-20 for details and [Vigor15] for use in FCIQMC.


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – HANDE QMC data.


	tstep (float [https://docs.python.org/2.7/library/functions.html#float]) – The time step used in the weight factor.


	mc_cycles (int [https://docs.python.org/2.7/library/functions.html#int]) – The number of monte carlo cycles per update step.


	weight_history (integer) – The number of iterations to reweight over.


	mean_shift (float [https://docs.python.org/2.7/library/functions.html#float]) – The mean shift.  Used to prevent weights becoming too big.


	weight_key (string) – Column to generate the reweighting data.






	Returns

	weight – List of weights.



	Return type

	List[float [https://docs.python.org/2.7/library/functions.html#float]]





References


	Umrigar93

	C.J. Umirigar et al., J. Chem. Phys. 99, 2865 (1993)



	Vigor15

	W.A. Vigor, et al., J. Chem. Phys. 142, 104101 (2015).












          

      

      

    

  

    
      
          
            
  
pyhande.data_preparing

Mappings/preparation of output data column names.


pyhande.data_preparing.hande_ccmc.fciqmc

CCMC and FCIQMC HANDE data preparation for analysis.


	
class pyhande.data_preparing.hande_ccmc_fciqmc.PrepHandeCcmcFciqmc

	Bases: pyhande.data_preparing.abs_data_preparator.AbsDataPreparator

Prepare HANDE CCMC/FCIQMC data for analysis.


	
observables

	Access observables, key mapping.


	Raises

	AttributeError – If data has not been prepared yet.



	Returns

	Map of observables property to column/observables name.



	Return type

	Dict[str [https://docs.python.org/2.7/library/functions.html#str],str [https://docs.python.org/2.7/library/functions.html#str]]










	
data

	Access (prepared) data.


	Raises

	AttributeError – If data has not been prepared yet.



	Returns

	QMC Data.
Cleaned list over merged calculations.



	Return type

	List[pd.DataFrame]










	
complex_data

	True if data is complex.


	Raises

	AttributeError – If preparation has not been done yet.



	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
replica_data

	True if replica tricks were used.


	Raises

	AttributeError – If preparation has not been done yet.



	Returns

	



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
exe(data: List[pandas.core.frame.DataFrame], make_copy: bool = True)

	Prepare data; deal with complex, replica and add inst. proje.


	Parameters

	
	data (List[pd.DataFrame]) – List of output data.  Should be all of same type
(complex/non-complex, replica-tricks/no replica tricks,
calc_type).


	make_copy (bool [https://docs.python.org/2.7/library/functions.html#bool], optional) – If true, deepcopy data so that passed in data are not
altered by any changes here.
The default is True.



















pyhande.error_analysing

Classes for analysis of CCMC/FCIQMC observables.


pyhande.error_analysing.analysis_utils

Shared helper functions for analysers.


	
pyhande.error_analysing.analysis_utils.check_data_input(data: List[pandas.core.frame.DataFrame], cols: Optional[List[str]], eval_ratio: Optional[Dict[str, str]], hybrid_col: Optional[str], start_its: Union[List[int], str], end_its: Optional[List[int]]) → None

	Check data input against other, previous, input.


	Parameters

	
	data (List[pd.DataFrame]) – List of QMC data.


	cols (Union[List[str [https://docs.python.org/2.7/library/functions.html#str]], Optional[List[str [https://docs.python.org/2.7/library/functions.html#str]]]]) – Columns to be analysed when blocking/ finding starting iteration
with ‘blocking’.


	eval_ratio (Optional[Dict[str [https://docs.python.org/2.7/library/functions.html#str], str [https://docs.python.org/2.7/library/functions.html#str]]]) – Contains information to evaluate ratio (e.g. projected energy)
when doing blocking analysis.


	hybrid_col (Union[Optional[str [https://docs.python.org/2.7/library/functions.html#str]], str [https://docs.python.org/2.7/library/functions.html#str]]) – Column name when doing hybrid analysis/ finding starting
iteration with ‘mser’.


	start_its (Union[List[int [https://docs.python.org/2.7/library/functions.html#int]], str [https://docs.python.org/2.7/library/functions.html#str]]) – Starting iterations for analysis or information on type of
find_starting_it function.


	end_its (Optional[List[int [https://docs.python.org/2.7/library/functions.html#int]]]) – Last iterations for analysis.






	Raises

	ValueError – If cols, eval_ratio, hybrid_cols are specified but not in data
respectively.
If start_its/end_its are lists of iterations but the list has a
different length than data.










	
pyhande.error_analysing.analysis_utils.set_cols(observables: Dict[str, str], it_key: str, cols: Optional[List[str]], replica_col: str, eval_ratio: Optional[Dict[str, str]], hybrid_col: Optional[str]) → Tuple[str, Optional[List[str]], str, Optional[Dict[str, str]], str]

	Set various columns and observable names.

Either the input is simply returned or set to observables[input] if
input starts with ‘obs:’.


	Parameters

	
	observables (Dict[str [https://docs.python.org/2.7/library/functions.html#str], str [https://docs.python.org/2.7/library/functions.html#str]]) – Map of key to column/observable name, e.g. {‘ref_key’: ‘N_0’}


	it_key (str [https://docs.python.org/2.7/library/functions.html#str]) – Key or actual name for iterations.


	cols (Union[Optional[List[str [https://docs.python.org/2.7/library/functions.html#str]]], List[str [https://docs.python.org/2.7/library/functions.html#str]]]) – Keys or actual names of columns/observables to be analysed in
blocking.


	replica_col (str [https://docs.python.org/2.7/library/functions.html#str]) – Key or actual name for replica column.


	eval_ratio (optional[Dict[str [https://docs.python.org/2.7/library/functions.html#str], str [https://docs.python.org/2.7/library/functions.html#str]]]) – Keys or actual names of elements in observable ratio to be
evaluated.


	hybrid_col (Union[Optional[str [https://docs.python.org/2.7/library/functions.html#str]], str [https://docs.python.org/2.7/library/functions.html#str]]) – Key or actual name of column/observable to be analysed in hybrid
analysis.






	Returns

	



	Return type

	(Set) values from above (except observables).











pyhande.error_analysing.blocker

Analyse Monte Carlo correlated output using reblocking.


	
class pyhande.error_analysing.blocker.Blocker(it_key: str, cols: List[str], replica_col: str, eval_ratio: Optional[Dict[str, str]] = None, hybrid_col: Optional[str] = None, start_its: Union[List[int], str] = 'blocking', end_its: List[int] = None, find_start_kw_args: Dict[str, Union[bool, float, int]] = None)

	Bases: pyhande.error_analysing.abs_error_analyser.AbsErrorAnalyser

Reblock specified columns from HANDE output using pyblock.

Can be used instead of HybridAnalyser.

This uses pyblock [1] to do reblocking, see Ref. [2] for more
details on the reblocking algorithm.

[1] - pyblock, James Spencer, http://github.com/jsspencer/pyblock
[2] - Flyvbjerg, H., Petersen, H. G., 1989, J. Chem. Phys. 91, 461.


	
classmethod inst_hande_ccmc_fciqmc(start_its: Union[List[int], str] = 'blocking', end_its: List[int] = None, find_start_kw_args: Dict[str, Union[bool, float, int]] = None)

	Return Blocker instance for a HANDE CCMC/FCIQMC calculation.


	Parameters

	__init__() (See) – 



	Returns

	Instance of the Blocker class, customised for a HANDE CCMC/
FCIQMC calculation.



	Return type

	Blocker










	
start_its

	Access _start_its attribute if available, else error.






	
end_its

	Access _end_its attribute if available, else error.






	
opt_block

	Access _opt_block attribute if available. Else error.






	
no_opt_block

	Access _no_opt_block attribute if available. Else error.






	
reblock

	Access _reblock attribute if available. Else raise error.






	
data_len

	Access _data_len attribute if available. Else raise error.






	
covariance

	Access _covariance attribute if available. Else error.






	
exe(data: List[pandas.core.frame.DataFrame], observables: Dict[str, str]) → None

	Do reblocking (first finding starting iteration if required).


	Parameters

	
	data (List[pd.DataFrame]) – HANDE calculation Monte Carlo output data.


	observables (Dict[str [https://docs.python.org/2.7/library/functions.html#str], str [https://docs.python.org/2.7/library/functions.html#str]]) – Mapping of column key to column name, e.g. ‘ref_key’: ‘N_0’.
The default is None.  If any of it_key, cols,
eval_ratio, hybrid_col, replica_col were instantiated
as ‘obs:key’ to be overwritten with observables[‘key’],
observables can’t be None and those keys have to be present.






	Raises

	ValueError – If not all columns to be blocked appear in ‘data’
or if the length of ‘data’ is different to length of
‘start_its’ or ‘end_its’ if they are defined.















pyhande.error_analysing.find_starting_iteration

Functions to find starting iteration for analysis.


	
pyhande.error_analysing.find_starting_iteration.find_starting_iteration_blocking(data: pandas.core.frame.DataFrame, end_it: int, it_key: str, cols: List[str], hybrid_col: str, start_max_frac: float = 0.8, grid_size: int = 10, number_of_reblocks_to_cut_off: int = 1, show_graph: bool = False) → int

	Find the best iteration to start analysing CCMC/FCIQMC data.

It first excludes data before not all data in all columns specified
in cols are varying and after end_it.  Then it searches for the
starting iteration using an adaptive grid search on a log scale
since we assume that the starting iteration is closer to the
beginning than the end of the available data.  During the search, a
loss function is minimised.  The loss is the fractional error over
number of data involved in the blocking for each data column in
cols.

This implementation is based on an older version in pyhande/lazy.py.
V. A. Neufeld thanks the EPSRC CDT CMMS cohort 1 in Cambridge for
helpful discussions.


Warning

Use with caution, check whether output is sensible and adjust
parameters if necessary.




	Parameters

	
	data (pd.DataFrame) – QMC data, e.g. as extracted by extract.py.  Has to contain
columns with key it_key and columns in cols, used for
blocking.


	end_it (int [https://docs.python.org/2.7/library/functions.html#int]) – Last iteration to be considered in blocking.


	it_key (str [https://docs.python.org/2.7/library/functions.html#str]) – Key of column containing MC iterations.


	cols (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – List of keys of columns involved in blocking.


	hybrid_col (str [https://docs.python.org/2.7/library/functions.html#str]) – Ignored here, for common interface.


	start_max_frac (float [https://docs.python.org/2.7/library/functions.html#float], optional) – The start iterations found has to be in the first
start_max_frac fraction of the data between
the point where all columns in cols have started varying and
end_it.  This prevents finding a starting iteration too close
to the end.  Has to be between 0.00001 and 1.0.
The default is 0.8.


	grid_size (int [https://docs.python.org/2.7/library/functions.html#int], optional) – Number of logarithmically spaced grid points per run.
The default is 10.


	number_of_reblocks_to_cut_off (int [https://docs.python.org/2.7/library/functions.html#int], optional) – To be extra sure, cut off a few reblocks to make sure data after
starting iteration is truly in equilibrium. Cannot be negative.
The default is 1.


	show_graph (bool [https://docs.python.org/2.7/library/functions.html#bool], optional) – If True, show a graph showing the columns with key cols[0] as
a function of iterations.  The suggested starting iteration is
highlighted.  The default is False.






	Raises

	
	ValueError – If start_max_frac or
number_of_reblocks_to_cut_off are out of range.


	RuntimeError – If not all columns with keys in cols have started varying in
data or if suitable starting iteration was not found.






	Returns

	Suggestion iteration in columns it_key where analysis should
start.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
pyhande.error_analysing.find_starting_iteration.find_starting_iteration_mser_min(data: pandas.core.frame.DataFrame, end_it: int, it_key: str, cols: List[str], hybrid_col: str, start_max_frac: float = 0.84, n_blocks: int = 100) → int

	Estimate starting iteration with MSER minimization scheme.


Warning

Use with caution, check whether output is sensible and adjust
parameters if necessary.



This function gives an optimal estimation of the starting
interations based on MSER minimization heuristics.
This methods decides the starting iterations \(d\) as minimizing
an evaluation function
MSER(\(d\)) =
\(\Sigma_{i=1}^{n-d} ( X_{i+d} - X_{mean}(d) ) / (n-d)^2\).
Here, \(n\) is length of time-series, \(X_i\) is
eval_ratio[‘num’] / eval_ratio[‘denom’] of \(i\)-th step,
and \(X_{mean}\) is the average of \(X_i\) after the
\(d\)-th step.

This is a reformatted and altered version of a previous
implementation in lazy.py by Tom Ichibha.
See Ichibha, T., Hongo, K., Maezono, R., Thom, A. J. W., 2019
arXiv:1904.09934 [physics.comp-ph]


	Parameters

	
	data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – Calculation output of a FCIQMC or CCMC calculation.


	end_it (int [https://docs.python.org/2.7/library/functions.html#int]) – Last iteration to be considered in blocking.


	it_key (str [https://docs.python.org/2.7/library/functions.html#str]) – Key of column containing MC iterations.


	cols (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – Ignored here.  Keep for common interface.


	hybrid_col (str [https://docs.python.org/2.7/library/functions.html#str]) – Column in data to be analysed here, e.g. ‘Inst. Proj. Energy’.


	start_max_frac (float [https://docs.python.org/2.7/library/functions.html#float]) – MSER(d) may oscillate when become unreanably small
when \(n-d\) is large. Thus, we calculate MSER(\(d\))
for \(d\) < (\(n\) * start_max_frac) and
give the optimal estimation of the starting iterations
only in this range of \(d\).
The default is 0.84.


	n_blocks (int [https://docs.python.org/2.7/library/functions.html#int]) – This analysis takes long time when \(n\) is large.
Thus, we pick up \(d\) for every ‘n_blocks’ samples,
calculate MSER(\(d\)), and decide the optimal estimation of
the starting iterations only from these d.
The default is 100.






	Returns

	starting_it – Iteration from which to start reblocking analysis for this
calculation.



	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]










	
pyhande.error_analysing.find_starting_iteration.select_find_start(key: str)

	Select find_starting_iteration function to use.


	Parameters

	key (str [https://docs.python.org/2.7/library/functions.html#str]) – Key linked to find_starting_iteration.



	Returns

	



	Return type

	Find_starting_iteration function.











pyhande.error_analysing.hybrid_ana

Analyse Monte Carlo correlated output with hybrid analyser.


	
class pyhande.error_analysing.hybrid_ana.HybridAna(it_key: str, hybrid_col: str, replica_col: str, cols: Optional[List[str]] = None, start_its: Union[List[int], str] = 'mser', end_its: List[int] = None, batch_size: int = 1, find_start_kw_args: Dict[str, Union[bool, float, int]] = None)

	Bases: pyhande.error_analysing.abs_error_analyser.AbsErrorAnalyser

Analyse ratio observable, such as projected energy.

Can be used instead of Blocker.

This scheme is made by hybridizing two different post-analysis
methods, AR model and Straatsma. The former (the latter) is
comparatively good at estimating the statistic error for smaller
(larger) length of time-series, respectively. This method just
picks up the larger statistic error from the ones given by both
methods. The mathematical details of both methods are explained
in (please cite if you use this):

Ichibha, T., Hongo, K., Maezono, R., Thom, A. J. W., 2019
arXiv:1904.09934 [physics.comp-ph]


	
classmethod inst_hande_ccmc_fciqmc(start_its: Union[List[int], str] = 'mser', end_its: List[int] = None, batch_size: int = 1, find_start_kw_args: Dict[str, Union[bool, float, int]] = None)

	Return HybridAna instance for a HANDE CCMC/FCIQMC calc.


	Parameters

	__init__() (See) – 



	Returns

	Instance of the HybridAna class, customised for a HANDE
CCMC/FCIQMC calculation.



	Return type

	HybridAna










	
start_its

	Access _start_its attribute if available, else error.






	
end_its

	Access _end_its attribute if available, else error.






	
opt_block

	Access _opt_block attribute if available. Else error.






	
no_opt_block

	Access _no_opt_block attribute if available. Else error.






	
exe(data: List[pandas.core.frame.DataFrame], observables: Dict[str, str]) → None

	Do analysis (first finding starting iteration if required).


	Parameters

	
	data (List[pd.DataFrame]) – HANDE calculation Monte Carlo output data.


	observables (Dict[str [https://docs.python.org/2.7/library/functions.html#str], str [https://docs.python.org/2.7/library/functions.html#str]]) – Mapping of column key to column name, e.g. ‘ref_key’: ‘N_0’.
The default is None.  If any of it_key, cols,
eval_ratio, hybrid_col, replica_col were instantiated
as ‘obs:key’ to be overwritten with observables[‘key’],
observables can’t be None and those keys have to be present.






	Raises

	ValueError – If not all columns to be blocked appear in ‘data’
or if the length of ‘data’ is different to length of
‘start_its’ or ‘end_its’ if they are defined.
















pyhande.extracting

Classes for extracting metadata and data from output files.


pyhande.extracting.extractor

Extract and merge (meta)data from (multiple) HANDE output files.


	
class pyhande.extracting.extractor.Extractor(merge: Dict[str, Union[List[str], str]] = None)

	Bases: pyhande.extracting.abs_extractor.AbsExtractor

Extract data/metadata from HANDE output files and merge.

Merge if desired/sensible, e.g. when calculation was restarted.
This expands the functionality of extract.py and is more compactly
represented as a class.


	
out_files

	Access (read only) out_files property.


	Raises

	AttributeError – If data has not been extracted yet, i.e. output files have
not been passed yet.



	Returns

	List of out_files names the data is extracted from.



	Return type

	List[str [https://docs.python.org/2.7/library/functions.html#str]]










	
data

	Access (extracted) data property.


	Raises

	AttributeError – If data has not been extracted yet.



	Returns

	QMC Data.
List over merged calculations.



	Return type

	List[pd.DataFrame]










	
metadata

	Access (extracted) metadata property.


	Raises

	AttributeError – If metadata has not been extracted yet.



	Returns

	Metadata.
List over merged calculations where each element is a list
over the metadata of the calculations that got merged.



	Return type

	List[List[Dict]]










	
calc_to_outfile_ind

	Map index of calculation to output file.

This maps what HANDE output file the data and metadata belong
to. E.g. [[0], [0], [1, 2]] with three output files shows that
the first calculations (index 0) contained two calculations and
the second and third output file (indices 1 and 2) were merged
to the third calculation.


	Raises

	AttributeError – If data has not been extracted yet.



	Returns

	Outer list has length equal the length of the data/metadata
lists and contains list of indices of output files
containing them (see above).



	Return type

	List[List[int [https://docs.python.org/2.7/library/functions.html#int]]]










	
all_ccmc_fciqmc

	Are all calculations extracted either CCMC or FCIQMC.

This will affect what postprocessing can be done.


	Raises

	AttributeError – If data has not been extracted yet.



	Returns

	True if all calculations extracted are either CCMC or
FCIQMC. False if at least one is of another type, such as
FCI or Hilbert space estimation.



	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]










	
exe(out_files: List[str])

	Extract and merge.

The merge code was inspired by an older implementation in
deprecated/removed lazy.py file.
[todo] Test with calc where a file has more then one calc.


	Parameters

	out_files (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – List of HANDE output filenames to be extracted here.
















pyhande.helpers

Helpful generic callables.


pyhande.helpers.simple_callables

Simple, useful callables when selecting.  *args are ignored.


	
pyhande.helpers.simple_callables.do_nothing(*args)

	Do nothing.






	
class pyhande.helpers.simple_callables.RaiseValueError(message)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Raise ValueError with message.








pyhande.results_viewer

Further analysis and data viewing.


pyhande.results_viewer.get_results

Helper functions to run analysis and get results object.


	
pyhande.results_viewer.get_results.define_objects_common(merge_type: str = 'uuid', analyser: str = 'blocking', start_its: Union[List[int], str] = 'blocking') → Tuple[pyhande.extracting.extractor.Extractor, pyhande.data_preparing.hande_ccmc_fciqmc.PrepHandeCcmcFciqmc, Union[pyhande.error_analysing.blocker.Blocker, pyhande.error_analysing.hybrid_ana.HybridAna]]

	Create extractor, preparator and analyser with common options.


	Parameters

	
	merge_type (str [https://docs.python.org/2.7/library/functions.html#str], optional) – how to do merge, ‘uuid’, ‘legacy’ or ‘no. Note that this is
different to fuller options when instantiating extractor object
directly, by default ‘uuid’.


	analyser (str [https://docs.python.org/2.7/library/functions.html#str], optional) – ‘blocking’ for doing reblocking or ‘hybrid’,
by default ‘blocking’


	start_its (Union[List[int [https://docs.python.org/2.7/library/functions.html#int]], str [https://docs.python.org/2.7/library/functions.html#str]], optional) – Either list of integer for start iterations or ‘blocking’ or
‘hybrid’, defining find starting iteration function to use.
by default ‘blocking’






	Returns

	Instantiated objects for extracting, preparing and analysing
data.



	Return type

	Tuple[Extractor, PrepHandeCcmcFciqmc, Union[Blocker, HybridAna]]










	
pyhande.results_viewer.get_results.analyse_data(out_files: List[str], extractor: pyhande.extracting.extractor.Extractor, preparator: pyhande.data_preparing.hande_ccmc_fciqmc.PrepHandeCcmcFciqmc = None, analyser: Union[pyhande.error_analysing.blocker.Blocker, pyhande.error_analysing.hybrid_ana.HybridAna] = None) → Union[pyhande.results_viewer.results.Results, pyhande.results_viewer.results_ccmc_fciqmc.ResultsCcmcFciqmc]

	Execute objects to extract data, prepare and analyse it.


	Parameters

	
	out_files (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – Output files with data to extract, prepare and analyse.


	extractor (Extractor) – Instance to extract data from files.


	preparator (PrepHandeCcmcFciqmc) – Instance to prepare data, e.g. calculate inst. proj. energy or
deal with complex/replica tricks. The default is None.


	analyser (Union[Blocker, HybridAna]) – Instance to analyse data, e.g. blocking. The default is None.






	Returns

	Results object to view and further analyse results.



	Return type

	Union[Results, ResultsCcmcFciqmc]










	
pyhande.results_viewer.get_results.get_results(out_files: List[str], merge_type: str = 'uuid', analyser: str = 'blocking', start_its: Union[List[int], str] = 'blocking') → Union[pyhande.results_viewer.results.Results, pyhande.results_viewer.results_ccmc_fciqmc.ResultsCcmcFciqmc]

	Lazy function to combine defining objects and executing them.


	Parameters

	define_objects_common and analyse_data (see) – 



	Returns

	



	Return type

	see analyse_data











pyhande.results_viewer.results

Access and investigate generic results from HANDE QMC.


	
class pyhande.results_viewer.results.Results(extractor: pyhande.extracting.extractor.Extractor)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Show and allow investigation of HANDE QMC results.

Extraction has already happened.
This is a base class, used for now for all non CCMC and non
FCIQMC calculations who use a more specific class.


	
extractor

	Access extractor used to supply these results.






	
summary

	Access summary.






	
get_metadata(meta_keys: Union[str, List[str]]) → pandas.core.frame.DataFrame

	Get part(s) of metadata in pandas DataFrame.


	Parameters

	meta_keys (Union[str [https://docs.python.org/2.7/library/functions.html#str], List[str [https://docs.python.org/2.7/library/functions.html#str]]]) – List of metadata items to put into DataFrame.  Each item as
‘keyOuter:keyInner:…’, e.g. [‘qmc:tau’, ‘system:ueg:r_s’]
adds extractor.metadata[:][‘qmc’][‘tau’] as well as
extractor.metadata[:][‘system’][‘ueg’][‘r_s’].



	Returns

	Contains metadata requested for all calculations.



	Return type

	pd.DataFrame










	
add_metadata(meta_keys: List[str])

	Add metadata to summary.  Overwritten in ResultsCcmcFciqmc.


	Parameters

	meta_keys (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – List of metadata to add in strings where different level
keys are separated by colons. E.g.
[‘qmc:tau’, ‘system:ueg:r_s’] adds
extractor.metadata[:][‘qmc’][‘tau’] as well as
extractor.metadata[:][‘system’][‘ueg’][‘r_s’] to summary
(if they exist).















pyhande.results_viewer.results_ccmc_fciqmc

Access and investigate CCMC/FCIQMC results from HANDE QMC.


	
class pyhande.results_viewer.results_ccmc_fciqmc.ResultsCcmcFciqmc(extractor: pyhande.extracting.extractor.Extractor, preparator: Optional[pyhande.data_preparing.hande_ccmc_fciqmc.PrepHandeCcmcFciqmc] = None, analyser: Union[pyhande.error_analysing.blocker.Blocker, pyhande.error_analysing.hybrid_ana.HybridAna, None] = None)

	Bases: pyhande.results_viewer.results.Results

Show CCMC and FCIQMC HANDE results and allow further analysis.


	
preparator

	Access preparator used to prepare data for analysis.






	
analyser

	Access analyser used to supply the analysed results.






	
summary_pretty

	Access self._summary but prettify for viewing data.

Combine value in “value/mean” column with “standard error”
columns for easy viewing, e.g. ‘0.123(4)’.  If not possible,
due to type or not present values, fill in value in
“value/mean”.


	Returns

	Prettified summary table for viewing (not further analysis).



	Return type

	pd.DataFrame










	
compare_obs(observables: List[str]) → pandas.core.frame.DataFrame

	Compare observables from .summary where obs are columns.


	Parameters

	observables (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – Observables from .summary to compare.



	Returns

	DataFrame where easier comparisons are possible.



	Return type

	pd.DataFrame










	
shoulder

	Access shoulder. For now, not hist shoulder [todo].

See J. S. Spencer and A. J. W. Thom (2016),
J. Chem. Phys. 144, 084108.






	
add_shoulder()

	Add shoulder to summary. [todo]: allow hist shoulder.






	
inefficiency

	Access inefficiency.

See W. A. Vigor et al. (2016), J. Chem. Phys. 144, 094110.






	
add_inefficiency()

	Add inefficiency to summary.






	
add_metadata(meta_keys: List[str])

	Overwritten version of Results.add_metadata.


	Parameters

	meta_keys (List[str [https://docs.python.org/2.7/library/functions.html#str]]) – List of metadata to add in strings where different level
keys are separated by colons. E.g.
[‘qmc:tau’, ‘system:ueg:r_s’] adds
extractor.metadata[:][‘qmc’][‘tau’] as well as
extractor.metadata[:][‘system’][‘ueg’][‘r_s’] to summary
(if they exist).










	
do_reweighting(max_weight_history: int = 300) → None

	Do reweighting to check for population bias if done blocking.

For each independent shift value, this shows a graph of
weight_history against (weighted) projected energy/
eval_ratio. If the (weighted) projected energies
(eval_ratio[‘name’]) do not agree with each other, this is a
sign of population control bias.
Note that this is only tested if eval_ratio[‘name’] contains
the projected energy.
See references.  Very first implementation credit to Will Vigor.


	Parameters

	max_weight_history (int [https://docs.python.org/2.7/library/functions.html#int], optional) – The maximum value of weight_history. Weight_history is
done in steps of 2**n with 2**n < `max_weight_history.
The default is 300.



	Raises

	
	TypeError – If analyser is not the blocking analyser.


	ValueError – eval_ratio not specified when analysing.








References


	Umrigar93

	C.J. Umrigar et al. (1993), J. Chem. Phys. 99, 2865.



	Vigor15

	W.A. Vigor, et al. (2015), J. Chem. Phys. 142, 104101.










	
plot_shoulder(inds: List[int] = None, show_shoulder: bool = True, log_scale: bool = True) → None

	Plot shoulder.


	Parameters

	
	inds (List[int [https://docs.python.org/2.7/library/functions.html#int]]) – Indices of calculations to plot. If None, plot all.
The default is None.


	show_shoulder (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Show positions of shoulder height with vertical lines.


	log_scale (bool [https://docs.python.org/2.7/library/functions.html#bool]) – Set x and y axis on log scale.




















          

      

      

    

  

    
      
          
            
  
Developers’ Guide

Compiled from various email threads on (and before) the nascent hande-dev list.  The HANDE project’s paper [Spencer14] for the 2nd Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2) at SC14 contains a summary of working practices and our approach for developing software in an academic environment.
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Git


git repository

HANDE can be downloaded by cloning the repository from github:

$ git clone https://github.com/hande-qmc/hande





We periodically tag releases

A private git repository, where much of the day-to-day development work takes
place, is currently located at a private repository at github and can
be cloned using:

$ git clone https://github.com/hande-qmc/hande-dev





or if using ssh keys,

$ git clone git@github.com:hande-qmc/hande-dev





If you would like access, please speak to one of the developers.  The rest of
this guide assumes you used the default remote name during the clone (i.e.
origin).  If this is not the case, we assume you are capable of
appropriately adjusting the commands given in the rest of the guide.


Note

Bug fixes and similar work are applied to both public and private repositories.  New
features are often developed in the private repository (which hooks into our buildbot
server for regression testing), whilst we iron them out.  Once we are happy that new
features are ready for production use, they will also be migrated to the public
repository.





Precepts


	All development happens in branches.


	Branches belong to a relevant namespace (feature/XXX indicates XXX is a branch
(name) for a new feature, he/XXX for a HANDE enhancement (he), bug_fix/XXX for
a bug fix, config/XXX for a new config file, etc).


	Branches are merged into master after review.  Merging between development
branches should be avoided.


	Branches should be reviewed by one other person (at least) before merging into
master.


	To review, send a pull request email (see git request-pull) to all developers
(perhaps including a summary of work in the branch, which is not generated by
request-pull!).  This should be viewed as starting a conversation on the work.


	Make changes prompted by the review and resend the pull request.  (This might
take a few iterations.)


	After a happy conclusion to the review, merge into master.




Notes:


	We would like each commit to at least compile but don’t expect each commit to
be perfect in its own right!  This is extremely useful for using git-bisect
when investigating regression errors.


	New functionality should be incorporated by new tests.  I intend to spend
a day soon creating new tests and checking the code coverage (lcov is
a wonderful tool) of the test suite.




See http://nvie.com/posts/a-successful-git-branching-model/ for
a popular variant on this approach.

The hope is that this approach will lead to better code and also (with a little
work) everyone will be more familiar/comfortable with the code that they’re not
directly working on themselves.



Branch namespaces

A (non-exhaustive!) list of namespaces we use for branches:


	he/XXX

	for an enhancement to HANDE (usually a modification to existing algorithms).



	bug_fix/XXX

	for a bug fix to a specific area of the codebase.



	opt/XXX

	for optimisation work (please include performance details in the commit
message!).



	feature/XXX

	for a new feature (generally bigger than an enhancement).



	doc/XXX

	for fixes/enhancements solely to the documentation.  (Often this kind of work
is coupled to feature/enhancement development work and the documentation is
updated directly in the relevant branches consisting mainly of changes to the
source code.)



	config/XXX

	for new configuration file(s)/updates to existing configurations.





Obviously there is some overlap between the he, feature and (to a lesser extent)
opt namespaces.  Broadly speaking, new algorithms or changes to existing algothims
which require a new input options are best suited to the feature namespace,
speed/memory improvements to opt/ and other improvements (code tidying, logging,
etc.) to the he namespace.



How to generate a pull request

First push your work to the relevant branch on the git sever and then generate
template text for the pull request:

$ git request-pull startref origin [endref]





where startref (endref) is the commit you want to be reviewed from (to) and
origin is the name of remote configured to the git sever.  startref and endref
can be any way of referring to a specific commit and endref defaults to HEAD if
not given.  Usually the branch would have been created from master, in which
case you can simply do (even if master has been committed to since the branch
was created):

$ git request-pull master origin





which generates (for example):

$ git request-pull master origin
The following changes since commit 7a58a8d1a8f2e8af15df1c9946e7596078649d79:

  Updated the config files for cx2. (2013-12-09 11:07:52 +0000)

are available in the git repository at:

  git@tyc-svn.cmth.ph.ic.ac.uk:hubbard_fciqmc config/cx2

for you to fetch changes up to 1a5522648378f406d3e5fbd87e22e3768da490bc:

  Fixed typo cx2 config comment (2013-12-13 14:35:42 +0000)

----------------------------------------------------------------
William Vigor (1):
      Fixed typo cx2 config comment

 config/cx2 |    2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)





Copy and paste this text into your email client and send the pull request to
hande-dev@imperial.ac.uk (possibly with some additional text describing
motivation/benchmark results/etc).  If sendmail/exim4/other MTA is set up
properly (naturally the CMTH ones are) then

$ git request-pull master origin | mail -s "Pull request" hande-dev@imperial.ac.uk





works as one would expect.



Merging to master

Here’s a workflow to make merging to master simple.  Remember that
with git it’s extremely difficult to make permanently destructive changes
so if it goes wrong it can be fixed.

Before you start make sure your code compiles and passes the test suite.
Do not merge broken code into master.

Now make sure your master branch is up to date.  Here I do this in a fetch
then a pull just to see what else has changed.  I do a diff to be sure
I’m the same as the origin master.

[master]$ git fetch
    remote: Counting objects: 340, done.
    remote: Compressing objects: 100% (182/182), done.
    remote: Total 200 (delta 137), reused 47 (delta 16)
    Receiving objects: 100% (200/200), 96.89 KiB, done.
    Resolving deltas: 100% (137/137), completed with 58 local objects.
    From tyc-svn.cmth.ph.ic.ac.uk:hubbard_fciqmc
       c17ef9e..2d8e130  master     -> origin/master
        ...

[master]$ git pull
    Updating c17ef9e..2d8e130
    Fast-forward
     lib/local/parallel.F90       |    9 ++-------
     src/full_diagonalisation.F90 |   30 ++++++++++++------------------
     2 files changed, 14 insertions(+), 25 deletions(-)

[master]$ git diff origin/master





The blank output from this indicates we’re at origin/master.

I’m going to merge the branch bug_fix/rdm_init.  Crucially we use the –no-ff
flag to ensure that the merge creates a commit on master; this keeps the
history clean (by keeping development work in logical chunks after merging)
and also makes it very easy to roll-back and revert an entire feature if problems
are encounted.

[master]$ git merge --no-ff bug_fix/rdm_init
    Merge made by the 'recursive' strategy.
     src/fciqmc_data.f90 |    2 +-
     1 file changed, 1 insertion(+), 1 deletion(-)

[master]$ git log --graph --oneline --decorate | head
    *   647b7dd (HEAD, master) Merge branch 'bug_fix/rdm_init'
    |\
    | * 3c67d81 (bug_fix/rdm_init) Fix uninitialised doing_exact_rdm_eigv breaking fci
    * |   2d8e130 (origin/master, origin/HEAD) Merge branch 'bug_fix/small_fci_mpi'
    |\ \





This shows that a new commit has been created on master.

At this point it’s possible that the merge needed some manual intervention.  It’s fine
to make these changes directly and commit them in the merge to your local master.  If the merge
is starting to get messy it might be best to rebase first to make it easier.

Very importantly, you should now compile the code and run the tests, even if the merge
completed without any problems — there might be unintented effects.  Only continue if the code
compiles and the tests pass.
If you need to make changes at this point, you can modify your local existing merge commit with

[master]$ git commit --amend





Now we’ve made sure that the code works, all we do is push to the main repo

[master]$ git push origin master
    Counting objects: 12, done.
    Delta compression using up to 12 threads.
    Compressing objects: 100% (7/7), done.
    Writing objects: 100% (7/7), 705 bytes, done.
    Total 7 (delta 5), reused 0 (delta 0)
    To git@tyc-svn.cmth.ph.ic.ac.uk:hubbard_fciqmc.git
       2d8e130..647b7dd  master -> master

[master]$ git log --graph --oneline --decorate | head
    *   647b7dd (HEAD, origin/master, origin/HEAD, master) Merge branch 'bug_fix/rdm_init'
    |\
    | * 3c67d81 (bug_fix/rdm_init) Fix uninitialised doing_exact_rdm_eigv breaking fci
    * |   2d8e130 Merge branch 'bug_fix/small_fci_mpi'
    |\ \





Almost there.  We now ought to clean up the namespace to avoid old branch names hanging around
(the code of course will always stay).

[master]$ git branch --delete bug_fix/rdm_init
[master]$ git push origin --delete bug_fix/rdm_init





The list of branches merged into HEAD can be found by doing

[master]$ git branch --all --merged





All done!



Unwanted experimental branches

Occasionally (frequently?!) we have tried something which didn’t work out.  If
we don’t want to keep any of the history, we can simply delete the local (and
if necessary) remote branches:

$ git branch --delete unwanted_branch
$ git push origin --delete unwanted_branch





But what about branches that we don’t intend to continue working on in the near
future, would like to keep around but without cluttering up the main
repository, making it unclear which branches need some TLC before merging?  We
have a separate repository where such branches can be sent, to be resurrected
if desired later.  The repository is at
ch-hande@git.uis.cam.ac.uk:hande_graveyard.git.  To push a local branch there:

$ git remote add graveyard ch-hande@git.uis.cam.ac.uk:hande_graveyard.git
$ git push remote graveyard unwanted_branch





and then delete the branch (both local and remote) from the main repository
using the same commands as before.  If the branch is not local, then you can
either check it out and then do the push and delete (easier) or use a refspec:

$ git push graveyard refs/remotes/origin/unwanted_branch:refs/heads/unwanted_branch





where origin/unwanted_branch is the remote branch to be moved to the graveyard
repository.  The branch on origin can then be deleted as before.





          

      

      

    

  

    
      
          
            
  
Adding a new test


	Ensure the test suite passes with the master on your system.


	Now checkout the branch you’re working on where you’d like to add the test.


	Rebuild HANDE so that the HANDE binary prints out the SHA1 hash of the current
commit.  Make sure that there are no uncommitted changes to the source directory so
that the benchmarks can be reproduced at a later date using the same binary.


	Inside test_suite find the appropriate directory in which to add your test, or
create a new directory, appropriately named, if necessary.


	Inside this directory create a new directory with a sensible name describing your
test, and change to it.


	Place the input files for your test in the directory.  You can have multiple input
files in a single directory.


	git add your directory (this avoids having to separate out files generated during
the tests).


	If you created a directory for a new category of tests then you will probably
need to add the directory name in [ ] to the jobconfig file. If not, then the
test should already be included through the globbing in jobconfig.


	If required, pick some appropriate categories to add your test to in jobconfig.


	Run testcode.py make-benchmarks to create new benchmarks e.g.

$ ../../testcode2/bin/testcode.py make-benchmarks
Using executable: /home/Alex/code/HANDE/master/test_suite/../bin/hande.x.
Test id: 09042014-2.
Benchmark: 288ad50.

...

Failed tests in:
    /home/Alex/code/HANDE/master/test_suite/H2-RHF-cc-pVTZ-Lz
Not all tests passed.
Create new benchmarks? [y/n] y
Setting new benchmark in userconfig to be 6d161d0.





Hopefully the only failed tests are your new tests (which you’ve checked).

Alternatively, a better method is to make a benchmark for the new test only:

$ ../../testcode2/bin/testcode.py make-benchmarks -ic fciqmc/H2-RHF-cc-pVTZ-Lz

...

Setting new benchmark in userconfig to be: 6d161d0 288ad50.





The use of the ‘i’ flag tells testcode2 to insert the new benchmark at the
start of the existing list of benchmarks, as can be seen in this example.

If you leave the ‘i’ flag out then it will remove all old benchmarks, which
we do not want.



	Now remember to add the benchmark files and the jobconfig and userconfig files
to the repository.

$ git add userconfig jobconfig fciqmc/*/benchmark.out.6d161d0.inp*





where 6d161d0 is the hash of the newly-created benchmark.



	Do a quick git status to make sure you haven’t missed anything important out, and
then you’re ready to commit the tests:

$ git commit -m "Added new test H2-RHF-cc-pVTZ-Lz and benchmark 6d161d0."





Remember you’re committing to a branch not the master.



	Push this to the main repository and send round a pull request for review before its
to be merged with master.







          

      

      

    

  

    
      
          
            
  
Debugging options

There are a couple of compilation options to help with debugging HANDE.


	The -g option to tools/mkconfig.py enables compiler options
for warnings and run-time checking.


	The -DDEBUG preprocessor flag enables additional debugging output.
Currently this is stack traces when stop_all is called to terminate
with an error - the addresses given can be converted to file:line number
information with addr2line. For example:

$ /path/to/hande.x test.lua
[...]
/usr/lib/libasan.so.4(+0x55c60)[0x7fc1c5000c60]
./bin/hande.x(+0x609e80)[0x5614f6742e80]
./bin/hande.x(+0x469177)[0x5614f65a2177]
./bin/hande.x(+0x1aa839)[0x5614f62e3839]
./bin/hande.x(+0x1aa8f1)[0x5614f62e38f1]
/usr/lib/libc.so.6(__libc_start_main+0xea)[0x7fc1c17e1f4a]
./bin/hande.x(+0xa93ca)[0x5614f61e23ca]

ERROR.
HANDE stops in subroutine: run_hande_lua.
Reason: File does not exist:test.lua
EXITING...





The addresses are not conserved between builds, compilers, optimisation levels and so
on. The filenames can be included if -rdynamic is included in the linker flags:

/usr/lib/libasan.so.4(+0x55c60)[0x7f1943b93c60]
./bin/hande.x(__errors_MOD_stop_all+0x1c2)[0x55bf6aae5d30]
./bin/hande.x(__lua_hande_MOD_run_lua_hande+0x6e1)[0x55bf6a945027]
./bin/hande.x(+0x1c66e9)[0x55bf6a6866e9]
./bin/hande.x(main+0x36)[0x55bf6a6867a1]
/usr/lib/libc.so.6(__libc_start_main+0xea)[0x7f1940374f4a]
./bin/hande.x(_start+0x2a)[0x55bf6a58527a]

ERROR.
HANDE stops in subroutine: run_hande_lua.
Reason: File does not exist:test.lua
EXITING...





The actual source (file and linenumber) can be found using either addr2line or
gdb (easier). With addr2line:

$ addr2line +0x469177 -e /path/to/hande.x
/home/james/hande/src/hande-bug-fix/src/lua_hande.F90:92





and with gdb:

$ gdb /path/to/hande.x
(gdb) list *__lua_hande_MOD_run_lua_hande+0x6e1
0x485027 is in lua_hande::run_lua_hande (src/lua_hande.F90:92).
87
88                    ! Read input file on parent and broadcast to all other processors.
89                    if (parent) then
90                        call get_command_argument(1, inp_file)
91                        inquire(file=inp_file, exist=t_exists)
92                        if (.not.t_exists) call stop_all('run_hande_lua','File does not exist:'//trim(inp_file))
93
94                        write (6,'(a14,/,1X,13("-"),/)') 'Input options'
95                        call read_file_to_buffer(buffer, inp_file)
96                        write (6,'(A)') trim(buffer)





where __lua_hande_MOD_run_lua_hande+0x6e1 was the address of interest from the
stacktrace. Note the * prefix. The same can be done with just the bare address if
-rdynamic isn’t used.

addr2line is a little more involved if -rdynamic is used – one needs to find the
offset for the function of interest and hence find the line address by adding the
address relative to the function start. For example, in:

./bin/hande.x(__errors_MOD_stop_all+0x1c2)[0x55bf6aae5d30]





the function is __errors_MOD_stop_all (stop_all in the errors module). The
start address can be found from objdump:

$ objdump -T /path/to/hande.x | grep __errors_MOD_stop_all
0000000000625b6e g    DF .text    0000000000000c0c  Base        __errors_MOD_stop_all





The first field is the address in hexadecimal. Hence:

$ python -c 'print(hex(0x0000000000625b6e+0x1c2))'
0x625d30
$ addr2line -e /path/to/hande.x 0x625d30
/path/to/hande/lib/local/error_handling.F90:60





Note the explicit 0x prefix for the start address of __errors_MOD_stop_all.








          

      

      

    

  

    
      
          
            
  
FAQ


	Is it ever ok to commit directly to master?

Yes, but only under very restricted circumstances!  If in doubt make a branch
and let someone else do the merge.


	I’ve got a quick bugfix which I’ve tested - can I commit it to master?

Well done on the testing.  A bugfix should go in a bugfix/XXX branch.  It’s
a single command to create this.  Another few commands and you’ll have an pull
request email to the hande-dev list for review.



	But it’s a really quick fix!  Surely it won’t hurt?

If it will affect functionality (and potentially someone else’s jobs) then
it probably ought to be reviewed!  If it’s a very minor corner case of which
you’re certain, then commit to a bugfix branch and then do the merge
yourself.  Always do this via a branch - don’t commit directly to master.
It’s sensible to ask the original author if you’re fixing their code
however.



	But I need to use this fix to make my runs work.

You can always run from a bugfix branch.  Because you’ve committed it to the
central git repository, you’ll have access to it everywhere.



	What if I need this bugfix to develop a new feature?

I don’t know.  Ask James!  One option is to base your subsequent feature
branch off the bug fix branch before it’s merged into master (git handles
merges very well!) or to cherry-pick the bug fix into your feature branch or
make enough noise to get the bug fix merged quickly.



	I’ve added some comments to clear up something.

This might be ok to commit to master.  If you designed the
feature/documentation then you’re effectively reviewing yourself.  If it’s
somebody else’s code it’s polite to have consulted someone on this (either
by email, or a review branch).



	But I’ve modified a feature that only I’m using…

It sounds like this should be in an enhancement branch he/XXX.  If only
you’re using it it’s even more important than someone else review it.



	I’ve accidentally committed some changes to my local master.  What do I do?

Remember that you can always push to a different branch on the main server.

$ git push origin master:he/XXX





would push your changes to the he/XXX branch.  It’s probably better, however
to checkout your changes locally to a branch, and then roll back your
master, and then commit the branch:

$ git checkout -b he/XXX
$ git push --set-upstream origin he/XXX
$ git checkout master
$ git reset --hard origin/master





Note the last command resets your local master to the same state as that on
origin.  You should adapt the reset command to set your master to point to
the desired commit (ie the first commit shared with the new branch he/XXX).



	Ok - I’ve gone through the review process and I’d like to try to merge to
master myself.  Is it easy?

Easy as pie.  There’s a workflow in the section Merging to master







	I’ve got a local branch which I’ve been working on for some time, but I don’t
want the pain of a large merge at the end.

This sounds like a workflow problem.  Some comments on this:


	We need to lose the idea of personal branches (note the branch namespace is
organised by topic rather than person), even though a branch might be
written entirely/mostly by one person.  In that sense, long-running
development work should be split into small, logical chunks, each of which
is attached one-at-a-time in its own branch.  We have always regretted
having (multiple) long-running branches.


	When wrenched away from a WIP with only a distant prospect of future free
time, a commit and push with light notes is a very worthwhile thing.  It’s
probably even worthwhile committing a plan before committing any actual
code.  If these are fast and flexible enough they will hopefully not
discourage, but actually encourage organization.  It might also encourage
(gasp) collaboration.  Perhaps you could create a directory in
documentation as a place for such notes/roadmaps, somewhere between Python’s
PEP system and informal topic-based TODO lists?


	We are pretty happy for development branches to be regularly rebased against
master (note: not merged in either direction), to lessen the pain of one
final merge between two very disparate branches.






	This is all very well (and I enjoy the Socratic method), but I’m stuck with
a huge branch I don’t have time to merge.  What do I do?

Commit it as a feature/XXX or he/XXX and ask for help from the hande-dev list.



	How do I review code?

We’re working on a workflow for this.  One method is to make a branch (if
you’re not already in one) and just add comments to the source.  It’s helpful
if the review is part of the git history (even if the comments never actually
make it to the master).  We currently are using watson-style [http://goosecode.com/watson/] tags in comments for code review and
discussion, for example:

! [review] - JSS: How about doing it this way?
! [reply] - AJWT: I thought about it but that causes problems due to X.





where JSS and AJWT are the initials of the reviewer and code author
respectively.

Documentation can also be reviewed, and in rst has the format

Some Documentation in RST format.

..
    [review] - AJWT: I don't see how this works.







	Will my code actually get reviewed?

We’re all usually terribly busy and have very little time, but in a group
effort a little from each person goes a long way.  If you review others’ code
then they’re more likely to review yours.  Make it easy to review, by keeping
it clean and the features short.  Remember, this kind of review is far more
lightweight than peer review of publications, and should be able to slot into
people’s ‘free’ time.  (Each branch is far more lightweight than a paper.)
A simple pull-request should be enough to get people to review.  This is
rather intricately tied in with the idea of project management.
Prodding/cajoling/bullying emails are all possible to aid the review



	What happens if no-one replies to the pull request?

Here are some opinions:


	I suggest that after an agreed upon time (X working days?) without even
a “I’ll review but am too busy until next week” reply, the author is free to
merge it into master (but should be open to fixes/improvements to that work
that others subsequently suggest).


	Having been burdened with years-long old dirty branches from other projects,
merging is certainly vital.  I don’t think lack of review should stop
merging, but it should prompt someone to ask why.


	I would view it as a sign that the work is stable and relatively
complete (for the time being) and is ready to be used by others/in
production calculations.






	What about major (long-term) development work?  Perhaps anyone engaged in
major projects should send out ‘pull-requests’ to request review of ongoing
work periodically?

Yes.



	Why are we bothering with review?  Surely it makes life more difficult?

In an attempt to avoid heaps of


	completely redundant code


	untested code


	buggy code




all ending up in master.  The main reason is to encourage something resembling
a coherent design and prevent someone going off in a (technical) direction
others don’t agree with/can see major problems with.  A big plus is that it
helps everyone become familiar with code that they didn’t write (which is why
doing code review is good for newcomers).



	PhD students are going to be working on this. How do you see the work they
produce on a single project over the course of 3 years going? How often should
their code be subject to review?

PhD projects are never one single monolithicproject (or at least shouldn’t
be!).  The amount and frequency of review is probably a function of how
experienced a developer is (in general and with HANDE).  Remember a pull
request can simply be an indication that the developer would like to start
a conversation rather than presenting the final result.  Developers should
also be encouraged to consider how a development task can be broken down into
smaller projects, which might well aid design and testing, as well as reducing
horrible merge conflicts from attempting to merge long-standing branches.



	How do I signify a ‘fine - no need to comment’ commit?

We suggest a pull request to the email list followed immediately by an email
announcing that the requester had also merged into master (or perhaps just the
latter email).








          

      

      

    

  

    
      
          
            
  
Notes on Releases



	Release notes for v1.5
	Added

	Changed

	Removed

	Bug Fixes





	Release notes for v1.4
	Added

	Changed

	Removed

	Bug Fixes





	Release notes for v1.3
	Added

	Changed

	Removed

	Bug Fixes





	What’s new in version 1.2? (not an exhaustive list)
	Features

	Bug Fixes

	Improvements to Stability and Robustness and Version Updates

	Pyhande Updates












          

      

      

    

  

    
      
          
            
  
Release notes for v1.5


Added


	New hybrid analysis of output files implemented in pyhande. (T. Ichibha, K. Hongo, R. Maezono and A. J. W. Thom, arXiv:1904.09934)


	Unit tests for pyhande.


	Revised, object-oriented python analysis code for FCIQMC/CCMC/FCI implemented in pyhande.






Changed


	pyhande updated for pandas 1.0 compatibility.


	Multireference CCMC updated to enable use of multiple secondary references (M-A. Filip,
C. J. C. Scott and A. J. W. Thom, J. Chem. Theory Comput., 15, 12, 6625-6635)
(2019)


	Quasi-Newton propagation algorithm updated for compatibility with 3D UEGs. Automatic
thresholds have also been added. (V. A. Neufeld and A. J. W. Thom, J. Chem. Theory Comput., 16, 3, 1503-1510)






Removed


	Iterative Lanczos algorithm for FCI calculations.






Bug Fixes


	Various minor memory and parallelism bugs.


	Unused variables removed from a series of functions.








          

      

      

    

  

    
      
          
            
  
Release notes for v1.4


Added


	Modified exchange integrals for complex read in systems for CCMC and FCIQMC solids calculations as mentioned in
HANDE-QMC developers/J. S. Spencer et al., J. Chem. Theory Comput., published online (2019)


	Functionality for multireference stochastic coupled cluster, as implemented by M-A. Filip, C. J. C. Scott and
A. J. W Thom (unpublished)


	Weighted excitation generators for CCMC and FCIQMC called “Heat-Bath/Uniform Cauchy-Schwarz” excitation generators in
V.A. Neufeld, A.J.W. Thom, J. Chem. Theory Comput., 15, 1, 127-140 (2019), related to
S. D. Smart, G. H. Booth, and A. Alavi, unpublished (whose excitation generators are mentioned in L. R. Schwarz, PhD thesis, Cambridge (2017))
for molecular read in systems.






Changed

n/a



Removed

n/a



Bug Fixes


	When using pattempt_update and OpenMP simulataneously, there were potential race conditions when updating
pattempt_single which have been fixed now.


	Previously, the k-points were printed off incorrectly in the symmetry table when doing solids CCMC/FCIQMC calculations.


	Fixed problems when using Quasi-Newton and k space lattice model systems (Hubbard model).








          

      

      

    

  

    
      
          
            
  
Release notes for v1.3


Added


	Weighted excitation generators for CCMC and FCIQMC as published in
V. A. Neufeld, and A. J. W. Thom, arXiv:1808.05093 and
A. A. Holmes, H. J. Changlani, and C. J. Umrigar, J. Chem. Theory Comput. 12, 1561 (2016) and
S. D. Smart, G. H. Booth, and A. Alavi, unpublished.


	Complex DMQMC.


	CMake-based build system also available.


	Ability to restart the state of the dSFMT RNG stream, allowing for restarted
calculations to have the same Markov chain as single calculations. Enabled by default.
Can be disabled in the restart options.


	Quasi-Newton propagation for complex particles.


	Shared memory MPI with the integrals.


	Pyhande: reweighting plot to check for population bias as published in
W. A. Vigor, J. S. Spencer, M. J. Bearpark, and A. J. W. Thom, J. Chem. Phys, 142, 104101 (2015).






Changed


	write_frequency now is in units of report loops rather than Monte Carlo cycles.






Removed

n/a



Bug Fixes


	Even selection weighting had an initialization bug affecting any calculation with more than one MPI process where one process has no single excitations.
The effect is that for those cycles without singles, the even_selection probability for the singles will be uninitialized, and possibly not zero.
For a sufficiently large calculation there will be a low probability that this is the case, and if there are ever single excitations on the processor,
that number will be used, and will continue to be used if there are no singles at some later date.  It is expected that there will be no notable effect
after equlibration.
Incorrect even selection weightings only affect the efficiency of the selection, and will not in general introduce a bias.
Effects on systems without single excitations (e.g. UEG and Hubbard models) are undefined.
The bug-fix changes Markov chains.


	Even selection also had a bug that caused integer overflow when the number of MPI processes raised to the power of (coupled cluster level - 1) is
bigger then a 32 bit integer.








          

      

      

    

  

    
      
          
            
  
What’s new in version 1.2? (not an exhaustive list)


	We are now on restart file version number 2.





Features


	Auto-shift-damping


	Blocking-on-the-fly


	Complex CCMC


	DMQMC structure factor


	DMQMC momentum distribution


	Logging of CCMC stochastic selection


	Lua “cookbook”


	Reduced Density Matrices


	Replica Tricks for CIQMC


	Semi stochastic quasi-Newton


	Truncated and Even Selection


	Use of real cumulative populations in CCMC


	Write to arbitrary output file






Bug Fixes


	Storing projected energy in restart file to avoid estimation based on configuration
interaction when restarting coupled cluster. Once we allow the rng state to be
stored as well, this means continous Markov chains across restarting in CCMC.
Before this bug fix, the initial projected energy when restarting was (usually) different
from what it should have been.


	Reading in semistochastic restart files.






Improvements to Stability and Robustness and Version Updates


	Move to LUA 5.3.3


	Removed support for GCC 4.7 and below


	Improve HDF5 support


	Improve broadcasting of integrals


	Alter how HANDE decides whether the shift should be varied or not when restarting.


	Improve direct LANCZOS hamiltonian memory handling.


	Improve dealing with HANDE.COMM in multi node calculations.


	Fix logging of death step


	Correctly convert 32 and 64 bit strings in restart files.






Pyhande Updates


	Compatibility with Pandas 0.20


	Extend lazy.py to deal with Simple FCIQMC and fix how QMC calculations are detected.


	Allow multiple canonical calculations to be averaged.
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